File size: 6,702 Bytes
5546580 c41bcc3 5654dca 3d72860 c41bcc3 bc12f7c c41bcc3 89a3df9 c41bcc3 2a9e01b 81ba37f 249ac1a c41bcc3 b939335 c41bcc3 5546580 c41bcc3 744e267 866f5c8 c41bcc3 744e267 c41bcc3 cc2fbe1 6de149e c41bcc3 eb409dd 2998219 6de149e da77733 c41bcc3 476cf97 bc0d1ce 249ac1a 8d9310f bc0d1ce 9650ea7 6de149e 9650ea7 bc0d1ce 9dad23e eb4185e 9dad23e eb4185e 9dad23e eb4185e 8e0551c eb4185e bc0d1ce eb4185e 13b086b 8e0551c 9dad23e c141883 eb4185e ac1b5ab c141883 bc0d1ce 282fda9 da77733 c41bcc3 282fda9 da77733 c41bcc3 ba577dd c41bcc3 da77733 282fda9 da77733 c41bcc3 282fda9 2a9e01b c41bcc3 da77733 ac1b5ab bc0d1ce 5546580 c41bcc3 5546580 c41bcc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import discord
import os
import threading
import gradio as gr
import requests
import json
import random
import time
import re
from discord import Embed, Color
from discord.ext import commands
# test
from gradio_client import Client
from PIL import Image
#from ratelimiter import RateLimiter
#
from datetime import datetime
from pytz import timezone
#
import asyncio
zurich_tz = timezone("Europe/Zurich")
def convert_to_timezone(dt, tz):
return dt.astimezone(tz).strftime("%Y-%m-%d %H:%M:%S %Z")
DFIF_TOKEN = os.getenv('HF_TOKEN')
df = Client("huggingface-projects/IF", DFIF_TOKEN)
sdlu = Client("huggingface-projects/stable-diffusion-latent-upscaler", DFIF_TOKEN)
DISCORD_TOKEN = os.environ.get("GRADIOTEST_TOKEN", None)
intents = discord.Intents.default()
intents.message_content = True
bot = commands.Bot(command_prefix='!', intents=intents)
#----------------------------------------------------------------------------------------------------------------------------------------------
@bot.event
async def on_ready():
print('Logged on as', bot.user)
bot.log_channel = bot.get_channel(1100458786826747945) # 1100458786826747945 = bot-test, 1107006391547342910 = lunarbot server
#----------------------------------------------------------------------------------------------------------------------------------------------
# Stage 1
@bot.command()
async def deepfloydif(ctx, *, prompt: str):
try:
prompt = prompt.strip()[:100] # Limit the prompt length to 100 characters
prompt = re.sub(r'[^\w\s]', '', prompt) # Remove special characters
def check_reaction(reaction, user):
return user == ctx.author and str(reaction.emoji) in ['1️⃣', '2️⃣', '3️⃣', '4️⃣']
await ctx.message.add_reaction('👍')
number_of_images = 4
current_time = int(time.time())
random.seed(current_time)
seed = random.randint(0, 2**32 - 1)
stage_1_results, stage_1_param_path, stage_1_result_path = df.predict(prompt, "blur", seed, number_of_images, 7.0, 'smart100', 50, api_name="/generate64")
png_files = [f for f in os.listdir(stage_1_results) if f.endswith('.png')]
if png_files:
first_png = png_files[0]
second_png = png_files[1]
third_png = png_files[2]
fourth_png = png_files[3]
first_png_path = os.path.join(stage_1_results, first_png)
second_png_path = os.path.join(stage_1_results, second_png)
third_png_path = os.path.join(stage_1_results, third_png)
fourth_png_path = os.path.join(stage_1_results, fourth_png)
img1 = Image.open(first_png_path)
img2 = Image.open(second_png_path)
img3 = Image.open(third_png_path)
img4 = Image.open(fourth_png_path)
combined_image = Image.new('RGB', (img1.width * 2, img1.height * 2))
combined_image.paste(img1, (0, 0))
combined_image.paste(img2, (img1.width, 0))
combined_image.paste(img3, (0, img1.height))
combined_image.paste(img4, (img1.width, img1.height))
combined_image_path = os.path.join(stage_1_results, 'combined_image.png')
combined_image.save(combined_image_path)
# Trigger the second stage prediction
#await dfif2(ctx, stage_1_result_path)
#1
sent_message = None
#2
# create thread -> send new message inside thread + combined_image -> add reactions -> dfif2
sent_message = await ctx.reply('Creating thread...')
#3
# Create a public thread based on the sent message
# could replace sent_message with initial user command message? try later
thread = await sent_message.create_thread(name='Image Upscaling Thread')
#4
with open(combined_image_path, 'rb') as f:
threadmsg = await thread.send('Here is the combined image. React with the image number you want to upscale!', file=discord.File(f, 'combined_image.png'))
# bot reacts with appropriate emojis to the post, both showing the user what options they have,
# as well as showing which post to react to.
for emoji in ['1️⃣', '2️⃣', '3️⃣', '4️⃣']:
await threadmsg.add_reaction(emoji)
reaction, user = await bot.wait_for('reaction_add', check=check_reaction)
if str(reaction.emoji) == '1️⃣':
await ctx.reply("Upscaling the first image...")
index = 0
await dfif2(ctx, index, stage_1_result_path)
elif str(reaction.emoji) == '2️⃣':
await ctx.reply("Upscaling the second image...")
index = 1
await dfif2(ctx, index, stage_1_result_path)
elif str(reaction.emoji) == '3️⃣':
await ctx.reply("Upscaling the third image...")
index = 2
await dfif2(ctx, index, stage_1_result_path)
elif str(reaction.emoji) == '4️⃣':
await ctx.reply("Upscaling the fourth image...")
index = 3
await dfif2(ctx, index, stage_1_result_path)
#deepfloydif try/except
except Exception as e:
print(f"Error: {e}")
await ctx.reply('An error occurred while processing your request. Please wait 5 seconds before retrying.')
#----------------------------------------------------------------------------------------------------------------------------
# Stage 2
async def dfif2(ctx, index: int, stage_1_result_path):
try:
selected_index_for_stage_2 = index
seed_2 = 0
guidance_scale_2 = 4
custom_timesteps_2 = 'smart50'
number_of_inference_steps_2 = 50
result_path = df.predict(stage_1_result_path, selected_index_for_stage_2, seed_2,
guidance_scale_2, custom_timesteps_2, number_of_inference_steps_2, api_name='/upscale256')
with open(result_path, 'rb') as f:
await ctx.reply('Here is the result of the second stage', file=discord.File(f, 'result.png'))
except Exception as e:
print(f"Error: {e}")
await ctx.reply('An error occurred while processing stage 2 upscaling. Please try again later.')
#----------------------------------------------------------------------------------------------------------------------------
def run_bot():
bot.run(DISCORD_TOKEN)
threading.Thread(target=run_bot).start()
def greet(name):
return "Hello " + name + "!"
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
demo.launch() |