File size: 11,855 Bytes
e8d6409
1589e5a
e8d6409
 
 
 
0dfc33a
e8d6409
 
 
 
 
 
c0bd384
6b1cf92
847ea5c
558d0d7
c0bd384
a303e78
 
 
 
e8d6409
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b71f89a
 
558d0d7
 
 
e8d6409
 
558d0d7
 
 
e8d6409
 
 
 
 
 
 
 
 
 
 
9560811
 
 
e8d6409
558d0d7
 
e8d6409
 
 
 
 
558d0d7
e8d6409
07d1aa7
42335bd
e8d6409
 
46341af
122e32e
 
 
 
 
ba26a7d
 
 
 
73f2651
 
 
 
 
 
a303e78
ba26a7d
 
 
 
 
 
 
 
 
b71f89a
ba26a7d
558d0d7
ba26a7d
e8d6409
a303e78
ba26a7d
 
 
 
 
 
a303e78
ba26a7d
 
 
 
a303e78
ba26a7d
 
39354ef
ed6c657
ba26a7d
 
 
73f2651
44d0a2b
1c8a9b2
e8d6409
 
 
ed6c657
e8d6409
 
 
 
 
 
 
 
 
39354ef
e8d6409
 
6b1cf92
9acf02f
 
 
ba26a7d
e8d6409
 
 
ed6c657
 
 
 
 
 
 
 
1021108
 
ed6c657
 
 
 
 
 
 
 
 
558d0d7
 
 
 
 
 
 
 
 
 
 
6934440
46341af
c7f2831
 
6934440
 
 
 
 
 
 
 
 
 
 
847ea5c
 
6934440
 
 
 
 
 
 
847ea5c
6934440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
847ea5c
 
007a2ef
 
 
 
 
 
 
46341af
 
 
 
 
 
 
 
3f43fd8
46341af
 
 
 
 
 
 
 
 
 
44d0a2b
 
 
 
483c136
 
 
1589e5a
46341af
 
 
558d0d7
 
6b1cf92
 
558d0d7
 
1589e5a
0dfc33a
792ab6c
558d0d7
f3997e2
558d0d7
e8d6409
 
 
6934440
 
 
 
ed6c657
483c136
e8d6409
 
 
 
 
 
 
 
 
 
 
6b1cf92
 
e8d6409
 
6934440
 
0dfc33a
b4fa09a
60c6cbb
b4fa09a
 
4308466
6b1cf92
847ea5c
dfa4c89
007a2ef
 
 
 
3667b89
007a2ef
 
 
dfa4c89
 
 
 
 
 
 
37589f7
30de0c3
ed6c657
0bf6097
37589f7
847ea5c
 
 
6934440
847ea5c
 
 
 
 
 
e8d6409
 
 
0005a21
de0f745
4325715
4d41e48
4325715
 
 
 
 
 
4d41e48
0005a21
4325715
 
 
 
 
44d0a2b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
<script lang="ts">
	import { onMount, tick } from 'svelte';

	let txt = '';
	let isLoading = false;
	let isOutputControlAdded = false;
	let drawingBoard: any;
	let canvas: HTMLCanvasElement;
	let ctx: CanvasRenderingContext2D | null;
	let noiseTs: DOMHighResTimeStamp;
	let imageTs: DOMHighResTimeStamp;
	let drawNextImage: () => void;
	let interval: ReturnType<typeof setInterval>;
	let canvasSize = 400;
	let canvasContainerEl: HTMLDivElement;
	let fileInput: HTMLInputElement;
	let sketchEl: HTMLCanvasElement;
	let isShowSketch = false;
	let outputImgs: CanvasImageSource[] = [];

	const animImageDuration = 500 as const;
	const animNoiseDuration = 3000 as const;

	async function drawNoise() {
		if (!ctx) {
			return;
		}

		const imageData = ctx.createImageData(canvas.width, canvas.height);
		const pix = imageData.data;

		for (let i = 0, n = pix.length; i < n; i += 4) {
			const c = 7;
			pix[i] = 40 * Math.random() * c; // Set a random gray
			pix[i + 1] = 40 * Math.random() * c; // Set a random gray
			pix[i + 2] = 40 * Math.random() * c; // Set a random gray
			pix[i + 3] = 255; // 100% opaque
		}

		const bitmap = await createImageBitmap(imageData);

		const duration = performance.now() - noiseTs;
		ctx.globalAlpha = Math.min(duration, animNoiseDuration) / animNoiseDuration;
		ctx.drawImage(bitmap, 0, 0, canvasSize, canvasSize);

		if (isLoading) {
			window.requestAnimationFrame(drawNoise);
		}
	}

	function drawImage(image: CanvasImageSource) {
		if (!ctx) {
			return;
		}

		const duration = performance.now() - imageTs;
		ctx.globalAlpha = Math.min(duration, animImageDuration) / animImageDuration;
		ctx.drawImage(image, 0, 0, canvasSize, canvasSize);

		if (duration < animImageDuration) {
			window.requestAnimationFrame(() => drawImage(image));
		}
	}

	async function getCanvasSnapshot(
		canvas: HTMLCanvasElement
	): Promise<{ imgFile: File; imgBitmap: ImageBitmap }> {
		const canvasDataUrl = canvas.toDataURL('png');
		const res = await fetch(canvasDataUrl);
		const blob = await res.blob();
		const imgFile = new File([blob], 'canvas shot.png', { type: 'image/png' });
		const imgData = canvas.getContext('2d')!.getImageData(0, 0, canvasSize, canvasSize);
		const imgBitmap = await createImageBitmap(imgData);
		return { imgFile, imgBitmap };
	}

	async function submitRequest() {
		if (!txt) {
			return alert('Please add prompt');
		}

		if (!canvas || !ctx) {
			return;
		}

		if (interval) {
			clearInterval(interval);
		}
		isLoading = true;
		isShowSketch = false;
		copySketch();

		// start noise animation
		noiseTs = performance.now();
		drawNoise();

		const { imgFile, imgBitmap: initialSketchBitmap } = await getCanvasSnapshot(canvas);
		const form = new FormData();
		form.append('prompt', txt);
		form.append('strength', '0.85');
		form.append('image', imgFile);

		try {
			const response = await fetch('https://sdb.pcuenca.net/i2i', {
				method: 'POST',
				body: form
			});

			const json = JSON.parse(await response.text());

			const { images: imagesBase64Strs }: { images: string[] } = json;

			if (!imagesBase64Strs.length) {
				return alert(
					'All the results were flagged. Please try again with diffeerent sketch + prompt'
				);
			}

			outputImgs = (await Promise.all(
				imagesBase64Strs.map(async (imgBase64Str) => {
					const imgEl = new Image();
					imgEl.src = `data:image/png;base64, ${imgBase64Str}`;
					// await image.onload
					await new Promise((resolve, _) => {
						imgEl.onload = () => resolve(imgEl);
					});
					return imgEl;
				})
			)) as CanvasImageSource[];

			isShowSketch = true;
			let i = 0;
			imageTs = performance.now();
			drawImage(outputImgs[i % outputImgs.length]);
			drawNextImage = () => {
				if (interval) {
					clearInterval(interval);
				}
				imageTs = performance.now();
				i = i + 1;
				drawImage(outputImgs[i % outputImgs.length]);
			};
			interval = setInterval(() => {
				i = i + 1;
				imageTs = performance.now();
				drawImage(outputImgs[i % outputImgs.length]);
			}, 2500);

			if (!isOutputControlAdded) {
				addOutputControl();
			}
		} catch (err) {
			console.error(err);
			alert('Error happened, queue might be full. Please try again in a bit :)');
		} finally {
			isLoading = false;
		}
	}

	function addOutputControl() {
		const div = document.createElement('div');
		div.className = 'drawing-board-control';

		const btn = document.createElement('button');
		btn.innerHTML = '⏯';
		btn.onclick = drawNextImage;
		div.append(btn);

		const controlsEl = document.querySelector('.drawing-board-controls');
		if (controlsEl && outputImgs.length > 1) {
			controlsEl.appendChild(div);
			isOutputControlAdded = true;
			canvasContainerEl.onclick = () => {
				if (interval) {
					clearInterval(interval);
				}
			};
		}
	}

	function addClearCanvasControl() {
		const div = document.createElement('div');
		div.className = 'drawing-board-control';

		const btn = document.createElement('button');
		btn.innerHTML = '🧹';
		btn.onclick = () => {
			ctx?.clearRect(0, 0, canvasSize, canvasSize);
			outputImgs = [];
			isShowSketch = false;
		};
		div.append(btn);

		const controlsEl = document.querySelector('.drawing-board-controls');
		if (controlsEl) {
			controlsEl.appendChild(div);
		}
	}

	function copySketch() {
		const context = sketchEl.getContext('2d');

		//set dimensions
		sketchEl.width = canvas.width;
		sketchEl.height = canvas.height;

		//apply the old canvas to the new one
		context!.drawImage(canvas, 0, 0);
	}

	async function drawUploadedImg(file: File) {
		if (interval) {
			clearInterval(interval);
		}
		const imgEl = new Image();
		imgEl.src = URL.createObjectURL(file);
		// await image.onload
		await new Promise((resolve, _) => {
			imgEl.onload = () => resolve(imgEl);
		});
		const { width, height } = imgEl;
		ctx?.drawImage(imgEl, 0, 0, width, height, 0, 0, canvasSize, canvasSize);
	}

	function onfImgUpload() {
		const file = fileInput.files?.[0];
		if (file) {
			drawUploadedImg(file);
		}
	}

	function handleDrop(e: DragEvent) {
		if (!e.dataTransfer?.files) {
			return;
		}
		e.preventDefault();
		const files = Array.from(e.dataTransfer.files);
		const file = files[0];
		drawUploadedImg(file);
	}

	function handlePaste(e: ClipboardEvent) {
		if (!e.clipboardData) {
			return;
		}
		const files = Array.from(e.clipboardData.files);
		if (files.length === 0) {
			return;
		}
		e.preventDefault();
		const file = files[0];
		drawUploadedImg(file);
	}

	function onKeyDown(e: KeyboardEvent) {
		if (e.code === 'Enter') {
			e.preventDefault();
			submitRequest();
		}
	}

	// original: https://gist.github.com/MonsieurV/fb640c29084c171b4444184858a91bc7
	function polyfillCreateImageBitmap() {
		window.createImageBitmap = async function (data: ImageData): Promise<ImageBitmap> {
			return new Promise((resolve, _) => {
				const canvas = document.createElement('canvas');
				const ctx = canvas.getContext('2d');
				canvas.width = data.width;
				canvas.height = data.height;
				ctx!.putImageData(data, 0, 0);
				const dataURL = canvas.toDataURL();
				const img = document.createElement('img');
				img.addEventListener('load', () => {
					resolve(img as any as ImageBitmap);
				});
				img.src = dataURL;
			});
		};
	}

	function makeLinksTargetBlank() {
		const linkEls = document.querySelectorAll('a');
		for (const linkEl of linkEls) {
			linkEl.target = '_blank';
		}
	}

	onMount(async () => {
		if (typeof createImageBitmap === 'undefined') {
			polyfillCreateImageBitmap();
		}
		const { innerWidth: windowWidth } = window;
		canvasSize = Math.min(canvasSize, Math.floor(windowWidth * 0.75));
		canvasContainerEl.style.width = `${canvasSize}px`;
		canvasContainerEl.style.height = `${canvasSize}px`;
		sketchEl.style.width = `${canvasSize}px`;
		sketchEl.style.height = `${canvasSize}px`;
		await tick();
		drawingBoard = new window.DrawingBoard.Board('board-container', {
			size: 10,
			controls: ['Color', { Size: { type: 'dropdown' } }, { DrawingMode: { filler: false } }],
			webStorage: false,
			enlargeYourContainer: true
		});
		canvas = drawingBoard.canvas;
		ctx = canvas.getContext('2d');
		canvas.ondragover = function (e) {
			e.preventDefault();
			return false;
		};
		addClearCanvasControl();
		makeLinksTargetBlank();
	});
</script>

<svelte:head>
	<link
		href="https://cdnjs.cloudflare.com/ajax/libs/drawingboard.js/0.4.2/drawingboard.css"
		rel="stylesheet"
	/>
	<script src="https://code.jquery.com/jquery-1.12.4.min.js"></script>
	<script
		src="https://cdnjs.cloudflare.com/ajax/libs/drawingboard.js/0.4.2/drawingboard.min.js"></script>
	<script
		src="https://cdnjs.cloudflare.com/ajax/libs/iframe-resizer/4.3.1/iframeResizer.contentWindow.min.js"></script>
</svelte:head>

<svelte:window on:drop|preventDefault|stopPropagation={handleDrop} on:paste={handlePaste} />

<div class="flex flex-wrap gap-x-4 gap-y-2 justify-center my-8">
	<canvas
		class="border-[1.2px] desktop:mt-[34px] {!isShowSketch ? 'hidden' : ''}"
		bind:this={sketchEl}
	/>
	<div class="flex flex-col items-center {isLoading ? 'pointer-events-none' : ''}">
		<div id="board-container" bind:this={canvasContainerEl} />
		<div>
			<div class="flex gap-x-2 mt-3 items-center justify-center {isLoading ? 'animate-pulse' : ''}">
				<input
					type="text"
					class="border-2 py-1"
					placeholder="Add prompt"
					maxlength="200"
					on:keydown={onKeyDown}
					bind:value={txt}
				/>
				<button
					on:click={submitRequest}
					class="bg-blue-500 hover:bg-blue-700 text-white font-bold py-1.5 px-4"
				>
					diffuse the f rest
				</button>
			</div>
			<p class="hidden desktop:inline mt-2 opacity-50">
				pro tip: upload img by dropping on the canvas
			</p>
			<div class="mt-2">
				<label class="inline desktop:hidden border py-1 px-1.5 bg-slate-200 cursor-pointer">
					<input
						accept="image/*"
						bind:this={fileInput}
						on:change={onfImgUpload}
						style="display: none;"
						type="file"
					/>
					upload img
				</label>
			</div>
		</div>
	</div>
</div>

<article class="prose-sm px-4 md:px-8 lg:px-24 mb-8">

	<div class="text-center">

		Stable Diffusion model by [CompVis](https://huggingface.co/CompVis) and [Stability AI](https://huggingface.co/stabilityai) - Demo by 🤗 Hugging Face
		
		Powered by [🤗 Diffusers: State-of-the-art diffusion models for image and audio generation in PyTorch](https://github.com/huggingface/diffusers). Based on [notebook by @psuraj28](https://twitter.com/psuraj28/status/1562039265126670339)
		
		Check out [Stable Diffusion Gradio demo](https://huggingface.co/spaces/stabilityai/stable-diffusion)
	</div>

### LICENSE
The model is licensed with a [CreativeML Open RAIL-M](https://huggingface.co/spaces/CompVis/stable-diffusion-license) license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please [read the license](https://huggingface.co/spaces/CompVis/stable-diffusion-license)

### Biases and content acknowledgment
Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the [LAION-5B dataset](https://laion.ai/blog/laion-5b/), which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4)
</article>