File size: 3,700 Bytes
55d6386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import requests
from typing import Optional

from fastapi import FastAPI, Header, HTTPException, BackgroundTasks
from fastapi.responses import FileResponse
from huggingface_hub.hf_api import HfApi

from .models import config, WebhookPayload

WEBHOOK_SECRET = os.getenv("WEBHOOK_SECRET")
HF_ACCESS_TOKEN = os.getenv("HF_ACCESS_TOKEN")
AUTOTRAIN_API_URL = "https://api.autotrain.huggingface.co"
AUTOTRAIN_UI_URL = "https://ui.autotrain.huggingface.co"


app = FastAPI()

@app.get("/")
async def home():
	return FileResponse("home.html")

@app.post("/webhook")
async def post_webhook(
		payload: WebhookPayload,
		task_queue: BackgroundTasks,
		x_webhook_secret:  Optional[str] = Header(default=None),
	):
	if x_webhook_secret is None:
		raise HTTPException(401)
	if x_webhook_secret != WEBHOOK_SECRET:
		raise HTTPException(403)
	if not (
		payload.event.action == "update"
		and payload.event.scope.startswith("repo.content")
		and payload.repo.name == config.input_dataset
		and payload.repo.type == "dataset"
	):
		# no-op
		return {"processed": False}

	task_queue.add_task(
		schedule_retrain,
		payload
	)

	return {"processed": True}


def schedule_retrain(payload: WebhookPayload):
	# Create the autotrain project
	try:
		project = AutoTrain.create_project(payload)
		AutoTrain.add_data(project_id=project["id"])
		AutoTrain.start_processing(project_id=project["id"])
	except requests.HTTPError as err:
		print("ERROR while requesting AutoTrain API:")
		print(f"  code: {err.response.status_code}")
		print(f"  {err.response.json()}")
		raise
	# Notify in the community tab
	notify_success(project["id"])

	return {"processed": True}


class AutoTrain:
	@staticmethod
	def create_project(payload: WebhookPayload) -> dict:
		project_resp = requests.post(
			f"{AUTOTRAIN_API_URL}/projects/create",
			json={
				"username": config.target_namespace,
				"proj_name": f"{config.autotrain_project_prefix}-{payload.repo.headSha[:7]}",
				"task": 18, # image-multi-class-classification
				"config": {
					"hub-model": config.input_model,
					"max_models": 1,
					"language": "unk",
				}
			},
			headers={
				"Authorization": f"Bearer {HF_ACCESS_TOKEN}"
			}
		)
		project_resp.raise_for_status()
		return project_resp.json()

	@staticmethod
	def add_data(project_id:int):
		requests.post(
			f"{AUTOTRAIN_API_URL}/projects/{project_id}/data/dataset",
			json={
				"dataset_id": config.input_dataset,
				"dataset_split": "train",
				"split": 4,
				"col_mapping": {
					"image": "image",
					"label": "target",
				}
			},
			headers={
				"Authorization": f"Bearer {HF_ACCESS_TOKEN}",
			}
		).raise_for_status()

	@staticmethod
	def start_processing(project_id: int):
		resp = requests.post(
			f"{AUTOTRAIN_API_URL}/projects/{project_id}/data/start_processing",
			headers={
				"Authorization": f"Bearer {HF_ACCESS_TOKEN}",
			}
		)
		resp.raise_for_status()
		return resp


def notify_success(project_id: int):
	message = NOTIFICATION_TEMPLATE.format(
		input_model=config.input_model,
		input_dataset=config.input_dataset,
		project_id=project_id,
		ui_url=AUTOTRAIN_UI_URL,
	)
	return HfApi(token=HF_ACCESS_TOKEN).create_discussion(
		repo_id=config.input_dataset,
		repo_type="dataset",
		title="✨ Retraining started!",
		description=message,
		token=HF_ACCESS_TOKEN,
	)

NOTIFICATION_TEMPLATE = """\
🌸 Hello there!

Following an update of [{input_dataset}](https://huggingface.co/datasets/{input_dataset}), an automatic re-training of [{input_model}](https://huggingface.co/{input_model}) has been scheduled on AutoTrain!

Please review and approve the project [here]({ui_url}/{project_id}/trainings) to start the training job.

(This is an automated message)
"""