File size: 3,813 Bytes
2ce3b4b
 
 
 
 
 
 
3ebd3a8
 
2ce3b4b
 
3ebd3a8
 
 
 
 
 
 
 
2ce3b4b
 
 
 
 
 
 
 
 
3ebd3a8
 
 
2ce3b4b
 
3ebd3a8
 
 
 
 
 
 
2ce3b4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ebd3a8
2ce3b4b
3ebd3a8
2ce3b4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ebd3a8
 
2ce3b4b
 
 
 
 
 
 
 
 
 
 
 
 
3ebd3a8
2ce3b4b
3ebd3a8
 
 
 
2ce3b4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ebd3a8
2ce3b4b
3ebd3a8
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import {
	VertexAI,
	HarmCategory,
	HarmBlockThreshold,
	type Content,
	type TextPart,
} from "@google-cloud/vertexai";
import type { Endpoint } from "../endpoints";
import { z } from "zod";
import type { Message } from "$lib/types/Message";
import type { TextGenerationStreamOutput } from "@huggingface/inference";

export const endpointVertexParametersSchema = z.object({
	weight: z.number().int().positive().default(1),
	model: z.any(), // allow optional and validate against emptiness
	type: z.literal("vertex"),
	location: z.string().default("europe-west1"),
	project: z.string(),
	apiEndpoint: z.string().optional(),
	safetyThreshold: z
		.enum([
			HarmBlockThreshold.HARM_BLOCK_THRESHOLD_UNSPECIFIED,
			HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
			HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
			HarmBlockThreshold.BLOCK_NONE,
			HarmBlockThreshold.BLOCK_ONLY_HIGH,
		])
		.optional(),
});

export function endpointVertex(input: z.input<typeof endpointVertexParametersSchema>): Endpoint {
	const { project, location, model, apiEndpoint, safetyThreshold } =
		endpointVertexParametersSchema.parse(input);

	const vertex_ai = new VertexAI({
		project,
		location,
		apiEndpoint,
	});

	return async ({ messages, preprompt, generateSettings }) => {
		const generativeModel = vertex_ai.getGenerativeModel({
			model: model.id ?? model.name,
			safetySettings: safetyThreshold
				? [
						{
							category: HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
							threshold: safetyThreshold,
						},
						{
							category: HarmCategory.HARM_CATEGORY_HARASSMENT,
							threshold: safetyThreshold,
						},
						{
							category: HarmCategory.HARM_CATEGORY_HATE_SPEECH,
							threshold: safetyThreshold,
						},
						{
							category: HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT,
							threshold: safetyThreshold,
						},
						{
							category: HarmCategory.HARM_CATEGORY_UNSPECIFIED,
							threshold: safetyThreshold,
						},
				  ]
				: undefined,
			generationConfig: {
				maxOutputTokens: generateSettings?.max_new_tokens ?? 4096,
				stopSequences: generateSettings?.stop,
				temperature: generateSettings?.temperature ?? 1,
			},
		});

		// Preprompt is the same as the first system message.
		let systemMessage = preprompt;
		if (messages[0].from === "system") {
			systemMessage = messages[0].content;
			messages.shift();
		}

		const vertexMessages = messages.map(({ from, content }: Omit<Message, "id">): Content => {
			return {
				role: from === "user" ? "user" : "model",
				parts: [
					{
						text: content,
					},
				],
			};
		});

		const result = await generativeModel.generateContentStream({
			contents: vertexMessages,
			systemInstruction: systemMessage
				? {
						role: "system",
						parts: [
							{
								text: systemMessage,
							},
						],
				  }
				: undefined,
		});

		let tokenId = 0;
		return (async function* () {
			let generatedText = "";

			for await (const data of result.stream) {
				if (!data?.candidates?.length) break; // Handle case where no candidates are present

				const candidate = data.candidates[0];
				if (!candidate.content?.parts?.length) continue; // Skip if no parts are present

				const firstPart = candidate.content.parts.find((part) => "text" in part) as
					| TextPart
					| undefined;
				if (!firstPart) continue; // Skip if no text part is found

				const isLastChunk = !!candidate.finishReason;

				const content = firstPart.text;
				generatedText += content;
				const output: TextGenerationStreamOutput = {
					token: {
						id: tokenId++,
						text: content,
						logprob: 0,
						special: isLastChunk,
					},
					generated_text: isLastChunk ? generatedText : null,
					details: null,
				};
				yield output;

				if (isLastChunk) break;
			}
		})();
	};
}
export default endpointVertex;