Spaces:
Runtime error
Runtime error
File size: 9,406 Bytes
d748bf5 317c295 4769339 317c295 6c71924 ac7b15a 4769339 317c295 4769339 317c295 4769339 981daf7 4769339 317c295 4769339 317c295 4769339 ac7b15a 317c295 ac7b15a 317c295 ac7b15a 317c295 ac7b15a 317c295 72386ad 6c47f29 ac7b15a 317c295 ac7b15a 317c295 ac7b15a 317c295 ac7b15a 317c295 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import os
os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html')
from os import getcwd, path, environ
import deepdoctection as dd
from deepdoctection.dataflow.serialize import DataFromList
import gradio as gr
_DD_ONE = "conf_dd_one.yaml"
_DETECTIONS = ["table", "ocr"]
dd.ModelCatalog.register("layout/model_final_inf_only.pt",dd.ModelProfile(
name="layout/model_final_inf_only.pt",
description="Detectron2 layout detection model trained on private datasets",
config="dd/d2/layout/CASCADE_RCNN_R_50_FPN_GN.yaml",
size=[274632215],
tp_model=False,
hf_repo_id=environ.get("HF_REPO"),
hf_model_name="model_final_inf_only.pt",
hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"],
categories={"1": dd.LayoutType.text,
"2": dd.LayoutType.title,
"3": dd.LayoutType.list,
"4": dd.LayoutType.table,
"5": dd.LayoutType.figure},
))
# Set up of the configuration and logging. Models are globally defined, so that they are not re-loaded once the input
# updates
cfg = dd.set_config_by_yaml(path.join(getcwd(),_DD_ONE))
cfg.freeze(freezed=False)
cfg.DEVICE = "cpu"
cfg.freeze()
# layout detector
layout_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2LAYOUT)
layout_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2LAYOUT)
categories_layout = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2LAYOUT).categories
assert categories_layout is not None
assert layout_weights_path is not None
d_layout = dd.D2FrcnnDetector(layout_config_path, layout_weights_path, categories_layout, device=cfg.DEVICE)
# cell detector
cell_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2CELL)
cell_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2CELL)
categories_cell = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2CELL).categories
assert categories_cell is not None
d_cell = dd.D2FrcnnDetector(cell_config_path, cell_weights_path, categories_cell, device=cfg.DEVICE)
# row/column detector
item_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2ITEM)
item_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2ITEM)
categories_item = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2ITEM).categories
assert categories_item is not None
d_item = dd.D2FrcnnDetector(item_config_path, item_weights_path, categories_item, device=cfg.DEVICE)
# word detector
det = dd.DoctrTextlineDetector()
# text recognizer
rec = dd.DoctrTextRecognizer()
def build_gradio_analyzer(table, table_ref, ocr):
"""Building the Detectron2/DocTr analyzer based on the given config"""
cfg.freeze(freezed=False)
cfg.TAB = table
cfg.TAB_REF = table_ref
cfg.OCR = ocr
cfg.freeze()
pipe_component_list = []
layout = dd.ImageLayoutService(d_layout, to_image=True, crop_image=True)
pipe_component_list.append(layout)
if cfg.TAB:
cell = dd.SubImageLayoutService(d_cell, dd.LayoutType.table, {1: 6}, True)
pipe_component_list.append(cell)
item = dd.SubImageLayoutService(d_item, dd.LayoutType.table, {1: 7, 2: 8}, True)
pipe_component_list.append(item)
table_segmentation = dd.TableSegmentationService(
cfg.SEGMENTATION.ASSIGNMENT_RULE,
cfg.SEGMENTATION.IOU_THRESHOLD_ROWS
if cfg.SEGMENTATION.ASSIGNMENT_RULE in ["iou"]
else cfg.SEGMENTATION.IOA_THRESHOLD_ROWS,
cfg.SEGMENTATION.IOU_THRESHOLD_COLS
if cfg.SEGMENTATION.ASSIGNMENT_RULE in ["iou"]
else cfg.SEGMENTATION.IOA_THRESHOLD_COLS,
cfg.SEGMENTATION.FULL_TABLE_TILING,
cfg.SEGMENTATION.REMOVE_IOU_THRESHOLD_ROWS,
cfg.SEGMENTATION.REMOVE_IOU_THRESHOLD_COLS,
)
pipe_component_list.append(table_segmentation)
if cfg.TAB_REF:
table_segmentation_refinement = dd.TableSegmentationRefinementService()
pipe_component_list.append(table_segmentation_refinement)
if cfg.OCR:
d_layout_text = dd.ImageLayoutService(det, to_image=True, crop_image=True)
pipe_component_list.append(d_layout_text)
d_text = dd.TextExtractionService(rec, extract_from_roi="WORD")
pipe_component_list.append(d_text)
match = dd.MatchingService(
parent_categories=cfg.WORD_MATCHING.PARENTAL_CATEGORIES,
child_categories=dd.LayoutType.word,
matching_rule=cfg.WORD_MATCHING.RULE,
threshold=cfg.WORD_MATCHING.IOU_THRESHOLD
if cfg.WORD_MATCHING.RULE in ["iou"]
else cfg.WORD_MATCHING.IOA_THRESHOLD,
)
pipe_component_list.append(match)
order = dd.TextOrderService(
text_container=dd.LayoutType.word,
floating_text_block_names=[dd.LayoutType.title, dd.LayoutType.text, dd.LayoutType.list],
text_block_names=[
dd.LayoutType.title,
dd.LayoutType.text,
dd.LayoutType.list,
dd.LayoutType.cell,
dd.CellType.header,
dd.CellType.body,
],
)
pipe_component_list.append(order)
pipe = dd.DoctectionPipe(pipeline_component_list=pipe_component_list)
return pipe
def prepare_output(dp, add_table, add_ocr):
out = dp.as_dict()
out.pop("image")
layout_items = dp.items
if add_ocr:
layout_items.sort(key=lambda x: x.reading_order)
layout_items_str = ""
for item in layout_items:
layout_items_str += f"\n {item.layout_type}: {item.text}"
if add_table:
html_list = [table.html for table in dp.tables]
if html_list:
html = html_list[0]
else:
html = None
else:
html = None
return dp.viz(show_table_structure=False), layout_items_str, html, out
def analyze_image(img, pdf, attributes):
# creating an image object and passing to the analyzer by using dataflows
add_table = _DETECTIONS[0] in attributes
add_ocr = _DETECTIONS[1] in attributes
analyzer = build_gradio_analyzer(add_table, add_table, add_ocr)
if img is not None:
image = dd.Image(file_name="input.png", location="")
image.image = img[:, :, ::-1]
df = DataFromList(lst=[image])
df = analyzer.analyze(dataset_dataflow=df)
elif pdf:
df = analyzer.analyze(path=pdf.name, max_datapoints=3)
else:
raise ValueError
df.reset_state()
df_iter = iter(df)
dp = next(df_iter)
return prepare_output(dp, add_table, add_ocr)
demo = gr.Blocks(css="scrollbar.css")
with demo:
with gr.Box():
gr.Markdown("<h1><center>deepdoctection - A Document AI Package</center></h1>")
gr.Markdown("<strong>deep</strong>doctection is a Python library that orchestrates document extraction"
" and document layout analysis tasks using deep learning models. It does not implement models"
" but enables you to build pipelines using highly acknowledged libraries for object detection,"
" OCR and selected NLP tasks and provides an integrated frameworks for fine-tuning, evaluating"
" and running models.\n This pipeline consists of a stack of models powered by <strong>Detectron2"
"</strong> for layout analysis and table recognition and <strong>DocTr</strong> for OCR.")
with gr.Box():
gr.Markdown("<h2><center>Upload a document and choose setting</center></h2>")
with gr.Row():
with gr.Column():
with gr.Tab("Image upload"):
with gr.Column():
inputs = gr.Image(type='numpy', label="Original Image")
with gr.Tab("PDF upload (only first image will be processed)"):
with gr.Column():
inputs_pdf = gr.File(label="PDF")
with gr.Column():
gr.Examples(
examples=[path.join(getcwd(), "sample_1.jpg"), path.join(getcwd(), "sample_2.png")],
inputs = inputs)
with gr.Row():
tok_input = gr.CheckboxGroup(
_DETECTIONS, value=_DETECTIONS, label="Additional extractions", interactive=True)
with gr.Row():
btn = gr.Button("Run model", variant="primary")
with gr.Box():
with gr.Row():
with gr.Column():
gr.Markdown("<h2><center>Text output</center></h2>")
gr.Markdown("Will only show contiguous text from text blocks, titles and lists")
image_text = gr.Textbox()
gr.Markdown("<h2><center>First table</center></h2>")
html = gr.HTML()
gr.Markdown("<h2><center>JSON output</center></h2>")
json = gr.JSON()
with gr.Column():
gr.Markdown("<h2><center>Layout detection</center></h2>")
image_output = gr.Image(type="numpy", label="Output Image")
btn.click(fn=analyze_image, inputs=[inputs, inputs_pdf, tok_input], outputs=[image_output, image_text, html, json])
demo.launch() |