Spaces:
Runtime error
Runtime error
File size: 5,157 Bytes
5f3b20a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
๋ฒกํฐ ์คํ ์ด ๋ชจ๋: ๋ฌธ์ ์๋ฒ ๋ฉ ์์ฑ ๋ฐ ๋ฒกํฐ ์คํ ์ด ๊ตฌ์ถ
๋ฐฐ์น ์ฒ๋ฆฌ ์ ์ฉ + ์ฒญํฌ ๊ธธ์ด ํ์ธ ์ถ๊ฐ
"""
import os
import argparse
import logging
from tqdm import tqdm
from langchain_community.vectorstores import FAISS
from langchain.schema.document import Document
from langchain_huggingface import HuggingFaceEmbeddings
from e5_embeddings import E5Embeddings
# ๋ก๊น
์ค์
logging.getLogger().setLevel(logging.ERROR)
def get_embeddings(model_name="intfloat/multilingual-e5-large-instruct", device="cuda"):
print(f"[INFO] ์๋ฒ ๋ฉ ๋ชจ๋ธ ๋๋ฐ์ด์ค: {device}")
return E5Embeddings(
model_name=model_name,
model_kwargs={'device': device},
encode_kwargs={'normalize_embeddings': True}
)
def build_vector_store_batch(documents, embeddings, save_path="vector_db", batch_size=4):
if not documents:
raise ValueError("๋ฌธ์๊ฐ ์์ต๋๋ค. ๋ฌธ์๊ฐ ์ฌ๋ฐ๋ฅด๊ฒ ๋ก๋๋์๋์ง ํ์ธํ์ธ์.")
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
# ์ฒญํฌ ๊ธธ์ด ์ถ๋ ฅ
lengths = [len(t) for t in texts]
print(f"๐ก ์ฒญํฌ ์: {len(texts)}")
print(f"๐ก ๊ฐ์ฅ ๊ธด ์ฒญํฌ ๊ธธ์ด: {max(lengths)} chars")
print(f"๐ก ํ๊ท ์ฒญํฌ ๊ธธ์ด: {sum(lengths) // len(lengths)} chars")
# ๋ฐฐ์น๋ก ๋๋๊ธฐ
batches = [texts[i:i + batch_size] for i in range(0, len(texts), batch_size)]
metadata_batches = [metadatas[i:i + batch_size] for i in range(0, len(metadatas), batch_size)]
print(f"Processing {len(batches)} batches with size {batch_size}")
print(f"Initializing vector store with batch 1/{len(batches)}")
# โ
from_documents ์ฌ์ฉ
first_docs = [
Document(page_content=text, metadata=meta)
for text, meta in zip(batches[0], metadata_batches[0])
]
vectorstore = FAISS.from_documents(first_docs, embeddings)
for i in tqdm(range(1, len(batches)), desc="Processing batches"):
try:
docs_batch = [
Document(page_content=text, metadata=meta)
for text, meta in zip(batches[i], metadata_batches[i])
]
vectorstore.add_documents(docs_batch)
if i % 10 == 0:
temp_save_path = f"{save_path}_temp"
os.makedirs(os.path.dirname(temp_save_path) if os.path.dirname(temp_save_path) else '.', exist_ok=True)
vectorstore.save_local(temp_save_path)
print(f"Temporary vector store saved to {temp_save_path} after batch {i}")
except Exception as e:
print(f"Error processing batch {i}: {e}")
error_save_path = f"{save_path}_error_at_batch_{i}"
os.makedirs(os.path.dirname(error_save_path) if os.path.dirname(error_save_path) else '.', exist_ok=True)
vectorstore.save_local(error_save_path)
print(f"Partial vector store saved to {error_save_path}")
raise
os.makedirs(os.path.dirname(save_path) if os.path.dirname(save_path) else '.', exist_ok=True)
vectorstore.save_local(save_path)
print(f"Vector store saved to {save_path}")
return vectorstore
def load_vector_store(embeddings, load_path="vector_db"):
if not os.path.exists(load_path):
raise FileNotFoundError(f"๋ฒกํฐ ์คํ ์ด๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค: {load_path}")
return FAISS.load_local(load_path, embeddings, allow_dangerous_deserialization=True)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="๋ฒกํฐ ์คํ ์ด ๊ตฌ์ถ")
parser.add_argument("--folder", type=str, default="final_dataset", help="๋ฌธ์๊ฐ ์๋ ํด๋ ๊ฒฝ๋ก")
parser.add_argument("--save_path", type=str, default="vector_db", help="๋ฒกํฐ ์คํ ์ด ์ ์ฅ ๊ฒฝ๋ก")
parser.add_argument("--batch_size", type=int, default=4, help="๋ฐฐ์น ํฌ๊ธฐ")
parser.add_argument("--model_name", type=str, default="intfloat/multilingual-e5-large-instruct", help="์๋ฒ ๋ฉ ๋ชจ๋ธ ์ด๋ฆ")
# parser.add_argument("--device", type=str, default="cuda", help="์ฌ์ฉํ ๋๋ฐ์ด์ค ('cuda' ๋๋ 'cpu')")
parser.add_argument("--device", type=str, default="cuda", help="์ฌ์ฉํ ๋๋ฐ์ด์ค ('cuda' ๋๋ 'cpu' ๋๋ 'cuda:1')")
args = parser.parse_args()
# ๋ฌธ์ ์ฒ๋ฆฌ ๋ชจ๋ import
from document_processor_image_test import load_documents, split_documents
documents = load_documents(args.folder)
chunks = split_documents(documents, chunk_size=800, chunk_overlap=100)
print(f"[DEBUG] ๋ฌธ์ ๋ก๋ฉ ๋ฐ ์ฒญํฌ ๋ถํ ์๋ฃ, ์๋ฒ ๋ฉ ๋จ๊ณ ์ง์
์ ")
print(f"[INFO] ์ ํ๋ ๋๋ฐ์ด์ค: {args.device}")
try:
embeddings = get_embeddings(
model_name=args.model_name,
device=args.device
)
print(f"[DEBUG] ์๋ฒ ๋ฉ ๋ชจ๋ธ ์์ฑ ์๋ฃ")
except Exception as e:
print(f"[ERROR] ์๋ฒ ๋ฉ ๋ชจ๋ธ ์์ฑ ์ค ์๋ฌ ๋ฐ์: {e}")
import traceback; traceback.print_exc()
exit(1)
build_vector_store_batch(chunks, embeddings, args.save_path, args.batch_size)
|