File size: 16,350 Bytes
427fd9c
8ac00e3
1fedfc5
0ade04a
 
1fedfc5
c2be249
3f17e4b
1fedfc5
18b592b
4ed9de7
3f17e4b
 
 
 
 
 
 
 
 
 
 
 
4ed9de7
3f17e4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdb4e68
3f17e4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ed9de7
3f17e4b
 
bdb4e68
18b592b
3f17e4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e72bc1b
1fedfc5
0ade04a
 
e72bc1b
72ea7e1
0ade04a
72ea7e1
 
1fedfc5
 
 
72ea7e1
 
b786476
820c44b
3f17e4b
 
 
0ade04a
 
820c44b
3f17e4b
c2be249
1fedfc5
d6059b9
3f17e4b
d6059b9
3f17e4b
c2be249
820c44b
c2be249
 
 
fd2ecc8
 
e72bc1b
0ade04a
4ed9de7
 
73fc96d
 
e72bc1b
3f17e4b
 
 
 
0ade04a
3f17e4b
 
c2be249
3f17e4b
0ade04a
 
 
 
 
3f17e4b
820c44b
3494b39
820c44b
3f17e4b
1fedfc5
2fe706b
fd2ecc8
3494b39
0ade04a
d6059b9
0ade04a
3f17e4b
0ade04a
 
 
1fedfc5
 
0ade04a
 
fd2ecc8
3f17e4b
 
 
 
 
1fedfc5
c2be249
fd2ecc8
3f17e4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fe706b
1fedfc5
3f17e4b
e72bc1b
1fedfc5
e72bc1b
 
 
3f17e4b
 
1fedfc5
820c44b
1fedfc5
820c44b
1fedfc5
820c44b
0ade04a
4ed9de7
1fedfc5
0ade04a
1fedfc5
 
 
0ade04a
3f17e4b
 
 
 
 
 
 
 
 
 
1fedfc5
3f17e4b
0fc2a04
1fedfc5
e72bc1b
 
 
820c44b
3f17e4b
1fedfc5
820c44b
3f17e4b
 
1fedfc5
820c44b
0ade04a
4ed9de7
3f17e4b
0ade04a
3f17e4b
 
0ade04a
4ed9de7
1fedfc5
c926c74
1fedfc5
e72bc1b
2fe706b
1fedfc5
3f17e4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fedfc5
2fe706b
 
 
3f17e4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fe706b
 
 
 
 
 
3f17e4b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import os
os.environ["TORCH_DYNAMO_DISABLE"] = "1"
import tempfile
import numpy as np
import gradio as gr
from ase.io import read, write
from ase.io.trajectory import Trajectory
from gradio_molecule3d import Molecule3D
import hashlib
import shutil

# ==== util: PDB writer robusto para Molecule3D ====
def _pdb_cache_path(prefix: str, key: str) -> str:
    gradio_cache_dir = os.path.join(tempfile.gettempdir(), "gradio")
    os.makedirs(gradio_cache_dir, exist_ok=True)
    return os.path.join(gradio_cache_dir, f"{prefix}_{key}.pdb")

def _write_pdb_with_fallback(atoms, pdb_path: str) -> str | None:
    """
    Intenta escribir PDB con ASE usando el id correcto ('proteindatabank').
    Si falla, crea un PDB minimal válido (líneas ATOM + END) suficiente para gradio_molecule3d.
    Devuelve la ruta si existe y tiene tamaño > 0, en caso contrario None.
    """
    try:
        # writer id correcto en ASE para PDB
        write(pdb_path, atoms, format="proteindatabank")
    except Exception as e:
        print(f"ASE PDB writer failed: {e} — trying manual minimal PDB")
        try:
            xyz = atoms.get_positions()
            syms = atoms.get_chemical_symbols()
            with open(pdb_path, "w") as f:
                serial = 1
                for (sym, (x, y, z)) in zip(syms, xyz):
                    # Campos esenciales: 'ATOM', serial, nombre (símbolo), resname, chain, res seq, coords y elemento
                    f.write(
                        f"ATOM  {serial:5d} {sym:<3s} MOL A   1    "
                        f"{x:8.3f}{y:8.3f}{z:8.3f}  1.00  0.00          {sym:>2s}\n"
                    )
                    serial += 1
                f.write("END\n")
        except Exception as e2:
            print(f"Manual PDB fallback failed: {e2}")
            return None

    # Validación
    if os.path.exists(pdb_path) and os.path.getsize(pdb_path) > 0:
        print(f"✅ PDB created: {pdb_path} ({os.path.getsize(pdb_path)} bytes)")
        try:
            with open(pdb_path, "r") as f:
                preview = f.read(160)
            print(f"PDB preview: {preview[:120]}...")
        except Exception:
            pass
        return pdb_path
    print("❌ PDB file not created or empty")
    return None

# ==== Molecule3D viewer preparation CORREGIDO ====
def prepare_molecule_for_viewer(traj_path):
    """Convert trajectory to format compatible with Molecule3D viewer"""
    if not traj_path or not os.path.exists(traj_path):
        print("No trajectory path provided or file doesn't exist")
        return None
    try:
        traj = Trajectory(traj_path)
        if len(traj) == 0:
            print("Empty trajectory")
            return None

        print(f"Preparing viewer: {len(traj)} frames, {len(traj[-1])} atoms")
        atoms = traj[-1]

        # clave única por posiciones del último frame
        pos_hash = hashlib.md5(atoms.get_positions().tobytes()).hexdigest()[:12]
        pdb_path = _pdb_cache_path("molecule", pos_hash)

        if os.path.exists(pdb_path) and os.path.getsize(pdb_path) > 0:
            print(f"PDB already exists: {pdb_path}")
            return pdb_path

        return _write_pdb_with_fallback(atoms, pdb_path)

    except Exception as e:
        print(f"Error preparing molecule for viewer: {e}")
        import traceback; traceback.print_exc()
        return None

# ==== Función para convertir archivo inicial a PDB para SPE ====
def prepare_input_for_viewer(structure_file):
    """Convert input structure file to PDB for Molecule3D viewer"""
    if not structure_file or not os.path.exists(structure_file):
        return None
    try:
        atoms = read(structure_file)
        key = hashlib.md5(str(structure_file).encode()).hexdigest()[:12]
        pdb_path = _pdb_cache_path("input", key)

        if os.path.exists(pdb_path) and os.path.getsize(pdb_path) > 0:
            print(f"Input PDB already exists: {pdb_path}")
            return pdb_path

        return _write_pdb_with_fallback(atoms, pdb_path)

    except Exception as e:
        print(f"Error preparing input for viewer: {e}")
        return None

# ==== OrbMol SPE ====
from orb_models.forcefield import pretrained
from orb_models.forcefield.calculator import ORBCalculator

_MODEL_CALC = None
def _load_orbmol_calc():
    global _MODEL_CALC
    if _MODEL_CALC is None:
        orbff = pretrained.orb_v3_conservative_inf_omat(
            device="cpu", precision="float32-high"
        )
        _MODEL_CALC = ORBCalculator(orbff, device="cpu")
    return _MODEL_CALC

def predict_molecule(structure_file, charge=0, spin_multiplicity=1):
    """
    Single Point Energy + fuerzas (OrbMol). Acepta archivos subidos.
    """
    try:
        calc = _load_orbmol_calc()
        if not structure_file:
            return "Error: Please upload a structure file", "Error", None

        file_path = structure_file
        if not os.path.exists(file_path):
            return f"Error: File not found: {file_path}", "Error", None
        if os.path.getsize(file_path) == 0:
            return f"Error: Empty file: {file_path}", "Error", None

        atoms = read(file_path)
        atoms.info = {"charge": int(charge), "spin": int(spin_multiplicity)}
        atoms.calc = calc

        energy = atoms.get_potential_energy()
        forces = atoms.get_forces()

        lines = [f"Total Energy: {energy:.6f} eV", "", "Atomic Forces:"]
        for i, fc in enumerate(forces):
            lines.append(f"Atom {i+1}: [{fc[0]:.4f}, {fc[1]:.4f}, {fc[2]:.4f}] eV/Å")
        max_force = float(np.max(np.linalg.norm(forces, axis=1)))
        lines += ["", f"Max Force: {max_force:.4f} eV/Å"]

        # Preparar PDB para visualización
        pdb_file = prepare_input_for_viewer(file_path)

        return "\n".join(lines), "Calculation completed with OrbMol", pdb_file
    except Exception as e:
        import traceback; traceback.print_exc()
        return f"Error during calculation: {e}", "Error", None

# ==== Simulaciones (helpers) ====
from simulation_scripts_orbmol import (
    run_md_simulation,
    run_relaxation_simulation,
)

# ==== Wrappers con debug y Molecule3D ====
def md_wrapper(structure_file, charge, spin, steps, tempK, timestep_fs, ensemble):
    try:
        if not structure_file:
            return ("Error: Please upload a structure file", None, "", "", "", None)

        file_path = structure_file
        print(f"MD Wrapper: Processing {file_path}")

        traj_path, log_text, script_text, explanation = run_md_simulation(
            file_path,
            int(steps),
            20,  # pre-relax steps
            float(timestep_fs),
            float(tempK),
            "NVT" if ensemble == "NVT" else "NVE",
            int(charge),
            int(spin),
        )
        status = f"MD completed: {int(steps)} steps at {int(tempK)} K ({ensemble})"
        print(f"MD completed, trajectory: {traj_path}")

        pdb_file = prepare_molecule_for_viewer(traj_path)
        print(f"PDB file for Molecule3D: {pdb_file}")

        return (status, traj_path, log_text, script_text, explanation, pdb_file)

    except Exception as e:
        print(f"MD Wrapper Error: {e}")
        import traceback; traceback.print_exc()
        return (f"Error: {e}", None, "", "", "", None)

def relax_wrapper(structure_file, steps, fmax, charge, spin, relax_cell):
    try:
        if not structure_file:
            return ("Error: Please upload a structure file", None, "", "", "", None)

        file_path = structure_file
        print(f"Relax Wrapper: Processing {file_path}")

        traj_path, log_text, script_text, explanation = run_relaxation_simulation(
            file_path,
            int(steps),
            float(fmax),
            int(charge),
            int(spin),
            bool(relax_cell),
        )
        status = f"Relaxation finished (≤ {int(steps)} steps, fmax={float(fmax)} eV/Å)"
        print(f"Relaxation completed, trajectory: {traj_path}")

        pdb_file = prepare_molecule_for_viewer(traj_path)
        print(f"PDB file for Molecule3D: {pdb_file}")

        return (status, traj_path, log_text, script_text, explanation, pdb_file)

    except Exception as e:
        print(f"Relax Wrapper Error: {e}")
        import traceback; traceback.print_exc()
        return (f"Error: {e}", None, "", "", "", None)

# ==== UI ====
with gr.Blocks(theme=gr.themes.Ocean(), title="OrbMol Demo") as demo:
    with gr.Tabs():
        # -------- SPE --------
        with gr.Tab("Single Point Energy"):
            with gr.Row():
                with gr.Column(scale=2):
                    gr.Markdown("# OrbMol — Quantum-Accurate Molecular Predictions")
                    gr.Markdown("Upload molecular structure files (.xyz, .pdb, .cif, .traj) for energy and force calculations.")
                    
                    xyz_input = gr.File(
                        label="Upload Structure File (.xyz/.pdb/.cif/.traj)",
                        file_types=[".xyz", ".pdb", ".cif", ".traj", ".mol", ".sdf"],
                        file_count="single"
                    )
                    with gr.Row():
                        charge_input = gr.Slider(minimum=-10, maximum=10, value=0, step=1, label="Charge")
                        spin_input = gr.Slider(minimum=1, maximum=11, value=1, step=1, label="Spin Multiplicity")
                    run_spe = gr.Button("Run OrbMol Prediction", variant="primary")
                    
                with gr.Column(variant="panel", min_width=500):
                    spe_out = gr.Textbox(label="Energy & Forces", lines=15, interactive=False)
                    spe_status = gr.Textbox(label="Status", interactive=False, max_lines=1)
                    spe_viewer = Molecule3D(
                        label="Input Structure Viewer",
                        reps=[
                            {
                                "model": 0, "chain": "", "resname": "",
                                "style": "stick", "color": "whiteCarbon",
                                "residue_range": "", "around": 0, "byres": False, "visible": True, "opacity": 1.0
                            }
                        ]
                    )

            run_spe.click(predict_molecule, [xyz_input, charge_input, spin_input], [spe_out, spe_status, spe_viewer])

        # -------- MD --------
        with gr.Tab("Molecular Dynamics"):
            with gr.Row():
                with gr.Column(scale=2):
                    gr.Markdown("## Molecular Dynamics Simulation")
                    gr.Markdown("Upload your molecular structure and configure MD parameters.")
                    
                    xyz_md = gr.File(
                        label="Upload Structure File (.xyz/.pdb/.cif/.traj)",
                        file_types=[".xyz", ".pdb", ".cif", ".traj", ".mol", ".sdf"],
                        file_count="single"
                    )
                    with gr.Row():
                        charge_md = gr.Slider(minimum=-10, maximum=10, value=0, step=1, label="Charge")
                        spin_md = gr.Slider(minimum=1, maximum=11, value=1, step=1, label="Spin Multiplicity")
                    with gr.Row():
                        steps_md = gr.Slider(minimum=10, maximum=2000, value=100, step=10, label="Steps")
                        temp_md = gr.Slider(minimum=10, maximum=1500, value=300, step=10, label="Temperature (K)")
                    with gr.Row():
                        timestep_md = gr.Slider(minimum=0.1, maximum=5.0, value=1.0, step=0.1, label="Timestep (fs)")
                        ensemble_md = gr.Radio(["NVE", "NVT"], value="NVE", label="Ensemble")
                    run_md_btn = gr.Button("Run MD Simulation", variant="primary")

                with gr.Column(variant="panel", min_width=520):
                    md_status = gr.Textbox(label="MD Status", interactive=False)
                    md_traj = gr.File(label="Trajectory (.traj)", interactive=False)
                    md_viewer = Molecule3D(
                        label="Final Structure Viewer (Last MD Frame)",
                        reps=[
                            {
                                "model": 0, "chain": "", "resname": "",
                                "style": "stick", "color": "whiteCarbon",
                                "residue_range": "", "around": 0, "byres": False, "visible": True, "opacity": 1.0
                            },
                            {
                                "model": 0, "chain": "", "resname": "",
                                "style": "sphere", "color": "whiteCarbon",
                                "residue_range": "", "around": 0, "byres": False, "visible": True, "opacity": 0.7
                            }
                        ]
                    )
                    md_log = gr.Textbox(label="Log", interactive=False, lines=15, max_lines=25)
                    md_script = gr.Code(label="Reproduction Script", language="python", interactive=False, lines=20, max_lines=30)
                    md_explain = gr.Markdown()

            run_md_btn.click(
                md_wrapper,
                inputs=[xyz_md, charge_md, spin_md, steps_md, temp_md, timestep_md, ensemble_md],
                outputs=[md_status, md_traj, md_log, md_script, md_explain, md_viewer],
            )

        # -------- Relax --------
        with gr.Tab("Relaxation / Optimization"):
            with gr.Row():
                with gr.Column(scale=2):
                    gr.Markdown("## Structure Relaxation/Optimization")
                    gr.Markdown("Upload your molecular structure for geometry optimization.")
                    
                    xyz_rlx = gr.File(
                        label="Upload Structure File (.xyz/.pdb/.cif/.traj)",
                        file_types=[".xyz", ".pdb", ".cif", ".traj", ".mol", ".sdf"],
                        file_count="single"
                    )
                    steps_rlx = gr.Slider(minimum=1, maximum=2000, value=300, step=1, label="Max Steps")
                    fmax_rlx = gr.Slider(minimum=0.001, maximum=0.5, value=0.05, step=0.001, label="Fmax (eV/Å)")
                    with gr.Row():
                        charge_rlx = gr.Slider(minimum=-10, maximum=10, value=0, step=1, label="Charge")
                        spin_rlx = gr.Slider(minimum=1, maximum=11, value=1, step=1, label="Spin")
                    relax_cell = gr.Checkbox(False, label="Relax Unit Cell")
                    run_rlx_btn = gr.Button("Run Optimization", variant="primary")

                with gr.Column(variant="panel", min_width=520):
                    rlx_status = gr.Textbox(label="Status", interactive=False)
                    rlx_traj = gr.File(label="Trajectory (.traj)", interactive=False)
                    rlx_viewer = Molecule3D(
                        label="Optimized Structure Viewer",
                        reps=[
                            {
                                "model": 0, "chain": "", "resname": "",
                                "style": "stick", "color": "whiteCarbon",
                                "residue_range": "", "around": 0, "byres": False, "visible": True, "opacity": 1.0
                            },
                            {
                                "model": 0, "chain": "", "resname": "",
                                "style": "sphere", "color": "whiteCarbon",
                                "residue_range": "", "around": 0, "byres": False, "visible": True, "opacity": 0.7
                            }
                        ]
                    )
                    rlx_log = gr.Textbox(label="Log", interactive=False, lines=15, max_lines=25)
                    rlx_script = gr.Code(label="Reproduction Script", language="python", interactive=False, lines=20, max_lines=30)
                    rlx_explain = gr.Markdown()

            run_rlx_btn.click(
                relax_wrapper,
                inputs=[xyz_rlx, steps_rlx, fmax_rlx, charge_rlx, spin_rlx, relax_cell],
                outputs=[rlx_status, rlx_traj, rlx_log, rlx_script, rlx_explain, rlx_viewer],
            )

print("Starting OrbMol model loading…")
_ = _load_orbmol_calc()

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True)