File size: 19,842 Bytes
ff2b8e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
# python3.7
"""Contains the implementation of discriminator described in StyleGAN2.

Compared to that of StyleGAN, the discriminator in StyleGAN2 mainly adds skip
connections, increases model size and disables progressive growth. This script
ONLY supports config F in the original paper.

Paper: https://arxiv.org/pdf/1912.04958.pdf

Official TensorFlow implementation: https://github.com/NVlabs/stylegan2
"""

import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F

__all__ = ['StyleGAN2Discriminator']

# Resolutions allowed.
_RESOLUTIONS_ALLOWED = [8, 16, 32, 64, 128, 256, 512, 1024]

# Initial resolution.
_INIT_RES = 4

# Architectures allowed.
_ARCHITECTURES_ALLOWED = ['resnet', 'skip', 'origin']

# Default gain factor for weight scaling.
_WSCALE_GAIN = 1.0


class StyleGAN2Discriminator(nn.Module):
    """Defines the discriminator network in StyleGAN2.

    NOTE: The discriminator takes images with `RGB` channel order and pixel
    range [-1, 1] as inputs.

    Settings for the network:

    (1) resolution: The resolution of the input image.
    (2) image_channels: Number of channels of the input image. (default: 3)
    (3) label_size: Size of the additional label for conditional generation.
        (default: 0)
    (4) architecture: Type of architecture. Support `origin`, `skip`, and
        `resnet`. (default: `resnet`)
    (5) use_wscale: Whether to use weight scaling. (default: True)
    (6) minibatch_std_group_size: Group size for the minibatch standard
        deviation layer. 0 means disable. (default: 4)
    (7) minibatch_std_channels: Number of new channels after the minibatch
        standard deviation layer. (default: 1)
    (8) fmaps_base: Factor to control number of feature maps for each layer.
        (default: 32 << 10)
    (9) fmaps_max: Maximum number of feature maps in each layer. (default: 512)
    """

    def __init__(self,
                 resolution,
                 image_channels=3,
                 label_size=0,
                 architecture='resnet',
                 use_wscale=True,
                 minibatch_std_group_size=4,
                 minibatch_std_channels=1,
                 fmaps_base=32 << 10,
                 fmaps_max=512):
        """Initializes with basic settings.

        Raises:
            ValueError: If the `resolution` is not supported, or `architecture`
                is not supported.
        """
        super().__init__()

        if resolution not in _RESOLUTIONS_ALLOWED:
            raise ValueError(f'Invalid resolution: `{resolution}`!\n'
                             f'Resolutions allowed: {_RESOLUTIONS_ALLOWED}.')
        if architecture not in _ARCHITECTURES_ALLOWED:
            raise ValueError(f'Invalid architecture: `{architecture}`!\n'
                             f'Architectures allowed: '
                             f'{_ARCHITECTURES_ALLOWED}.')

        self.init_res = _INIT_RES
        self.init_res_log2 = int(np.log2(self.init_res))
        self.resolution = resolution
        self.final_res_log2 = int(np.log2(self.resolution))
        self.image_channels = image_channels
        self.label_size = label_size
        self.architecture = architecture
        self.use_wscale = use_wscale
        self.minibatch_std_group_size = minibatch_std_group_size
        self.minibatch_std_channels = minibatch_std_channels
        self.fmaps_base = fmaps_base
        self.fmaps_max = fmaps_max

        self.pth_to_tf_var_mapping = {}
        for res_log2 in range(self.final_res_log2, self.init_res_log2 - 1, -1):
            res = 2 ** res_log2
            block_idx = self.final_res_log2 - res_log2

            # Input convolution layer for each resolution (if needed).
            if res_log2 == self.final_res_log2 or self.architecture == 'skip':
                self.add_module(
                    f'input{block_idx}',
                    ConvBlock(in_channels=self.image_channels,
                              out_channels=self.get_nf(res),
                              kernel_size=1,
                              use_wscale=self.use_wscale))
                self.pth_to_tf_var_mapping[f'input{block_idx}.weight'] = (
                    f'{res}x{res}/FromRGB/weight')
                self.pth_to_tf_var_mapping[f'input{block_idx}.bias'] = (
                    f'{res}x{res}/FromRGB/bias')

            # Convolution block for each resolution (except the last one).
            if res != self.init_res:
                self.add_module(
                    f'layer{2 * block_idx}',
                    ConvBlock(in_channels=self.get_nf(res),
                              out_channels=self.get_nf(res),
                              use_wscale=self.use_wscale))
                tf_layer0_name = 'Conv0'
                self.add_module(
                    f'layer{2 * block_idx + 1}',
                    ConvBlock(in_channels=self.get_nf(res),
                              out_channels=self.get_nf(res // 2),
                              scale_factor=2,
                              use_wscale=self.use_wscale))
                tf_layer1_name = 'Conv1_down'

                if self.architecture == 'resnet':
                    layer_name = f'skip_layer{block_idx}'
                    self.add_module(
                        layer_name,
                        ConvBlock(in_channels=self.get_nf(res),
                                  out_channels=self.get_nf(res // 2),
                                  kernel_size=1,
                                  add_bias=False,
                                  scale_factor=2,
                                  use_wscale=self.use_wscale,
                                  activation_type='linear'))
                    self.pth_to_tf_var_mapping[f'{layer_name}.weight'] = (
                        f'{res}x{res}/Skip/weight')

            # Convolution block for last resolution.
            else:
                self.add_module(
                    f'layer{2 * block_idx}',
                    ConvBlock(in_channels=self.get_nf(res),
                              out_channels=self.get_nf(res),
                              use_wscale=self.use_wscale,
                              minibatch_std_group_size=minibatch_std_group_size,
                              minibatch_std_channels=minibatch_std_channels))
                tf_layer0_name = 'Conv'
                self.add_module(
                    f'layer{2 * block_idx + 1}',
                    DenseBlock(in_channels=self.get_nf(res) * res * res,
                               out_channels=self.get_nf(res // 2),
                               use_wscale=self.use_wscale))
                tf_layer1_name = 'Dense0'

            self.pth_to_tf_var_mapping[f'layer{2 * block_idx}.weight'] = (
                f'{res}x{res}/{tf_layer0_name}/weight')
            self.pth_to_tf_var_mapping[f'layer{2 * block_idx}.bias'] = (
                f'{res}x{res}/{tf_layer0_name}/bias')
            self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 1}.weight'] = (
                f'{res}x{res}/{tf_layer1_name}/weight')
            self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 1}.bias'] = (
                f'{res}x{res}/{tf_layer1_name}/bias')

            # Final dense block.
            self.add_module(
                f'layer{2 * block_idx + 2}',
                DenseBlock(in_channels=self.get_nf(res // 2),
                           out_channels=max(self.label_size, 1),
                           use_wscale=self.use_wscale,
                           activation_type='linear'))
            self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 2}.weight'] = (
                f'Output/weight')
            self.pth_to_tf_var_mapping[f'layer{2 * block_idx + 2}.bias'] = (
                f'Output/bias')

        if self.architecture == 'skip':
            self.downsample = DownsamplingLayer()

    def get_nf(self, res):
        """Gets number of feature maps according to current resolution."""
        return min(self.fmaps_base // res, self.fmaps_max)

    def forward(self, image, label=None, **_unused_kwargs):
        expected_shape = (self.image_channels, self.resolution, self.resolution)
        if image.ndim != 4 or image.shape[1:] != expected_shape:
            raise ValueError(f'The input tensor should be with shape '
                             f'[batch_size, channel, height, width], where '
                             f'`channel` equals to {self.image_channels}, '
                             f'`height`, `width` equal to {self.resolution}!\n'
                             f'But `{image.shape}` is received!')
        if self.label_size:
            if label is None:
                raise ValueError(f'Model requires an additional label '
                                 f'(with size {self.label_size}) as inputs, '
                                 f'but no label is received!')
            batch_size = image.shape[0]
            if label.ndim != 2 or label.shape != (batch_size, self.label_size):
                raise ValueError(f'Input label should be with shape '
                                 f'[batch_size, label_size], where '
                                 f'`batch_size` equals to that of '
                                 f'images ({image.shape[0]}) and '
                                 f'`label_size` equals to {self.label_size}!\n'
                                 f'But `{label.shape}` is received!')

        x = self.input0(image)
        for res_log2 in range(self.final_res_log2, self.init_res_log2 - 1, -1):
            block_idx = self.final_res_log2 - res_log2
            if self.architecture == 'skip' and block_idx > 0:
                image = self.downsample(image)
                x = x + self.__getattr__(f'input{block_idx}')(image)
            if self.architecture == 'resnet' and res_log2 != self.init_res_log2:
                residual = self.__getattr__(f'skip_layer{block_idx}')(x)
            x = self.__getattr__(f'layer{2 * block_idx}')(x)
            x = self.__getattr__(f'layer{2 * block_idx + 1}')(x)
            if self.architecture == 'resnet' and res_log2 != self.init_res_log2:
                x = (x + residual) / np.sqrt(2.0)
        x = self.__getattr__(f'layer{2 * block_idx + 2}')(x)

        if self.label_size:
            x = torch.sum(x * label, dim=1, keepdim=True)
        return x


class MiniBatchSTDLayer(nn.Module):
    """Implements the minibatch standard deviation layer."""

    def __init__(self, group_size=4, new_channels=1, epsilon=1e-8):
        super().__init__()
        self.group_size = group_size
        self.new_channels = new_channels
        self.epsilon = epsilon

    def forward(self, x):
        if self.group_size <= 1:
            return x
        ng = min(self.group_size, x.shape[0])
        nc = self.new_channels
        temp_c = x.shape[1] // nc                               # [NCHW]
        y = x.view(ng, -1, nc, temp_c, x.shape[2], x.shape[3])  # [GMncHW]
        y = y - torch.mean(y, dim=0, keepdim=True)              # [GMncHW]
        y = torch.mean(y ** 2, dim=0)                           # [MncHW]
        y = torch.sqrt(y + self.epsilon)                        # [MncHW]
        y = torch.mean(y, dim=[2, 3, 4], keepdim=True)          # [Mn111]
        y = torch.mean(y, dim=2)                                # [Mn11]
        y = y.repeat(ng, 1, x.shape[2], x.shape[3])             # [NnHW]
        return torch.cat([x, y], dim=1)


class DownsamplingLayer(nn.Module):
    """Implements the downsampling layer.

    This layer can also be used as filtering by setting `scale_factor` as 1.
    """

    def __init__(self, scale_factor=2, kernel=(1, 3, 3, 1), extra_padding=0):
        super().__init__()
        assert scale_factor >= 1
        self.scale_factor = scale_factor

        if extra_padding != 0:
            assert scale_factor == 1

        if kernel is None:
            kernel = np.ones((scale_factor), dtype=np.float32)
        else:
            kernel = np.array(kernel, dtype=np.float32)
        assert kernel.ndim == 1
        kernel = np.outer(kernel, kernel)
        kernel = kernel / np.sum(kernel)
        assert kernel.ndim == 2
        assert kernel.shape[0] == kernel.shape[1]
        kernel = kernel[np.newaxis, np.newaxis]
        self.register_buffer('kernel', torch.from_numpy(kernel))
        self.kernel = self.kernel.flip(0, 1)
        padding = kernel.shape[2] - scale_factor + extra_padding
        self.padding = ((padding + 1) // 2, padding // 2,
                        (padding + 1) // 2, padding // 2)

    def forward(self, x):
        assert x.ndim == 4
        channels = x.shape[1]
        x = x.view(-1, 1, x.shape[2], x.shape[3])
        x = F.pad(x, self.padding, mode='constant', value=0)
        x = F.conv2d(x, self.kernel, stride=self.scale_factor)
        x = x.view(-1, channels, x.shape[2], x.shape[3])
        return x


class ConvBlock(nn.Module):
    """Implements the convolutional block.

    Basically, this block executes minibatch standard deviation layer (if
    needed), filtering layer (if needed), convolutional layer, and activation
    layer in sequence.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 add_bias=True,
                 scale_factor=1,
                 filtering_kernel=(1, 3, 3, 1),
                 use_wscale=True,
                 wscale_gain=_WSCALE_GAIN,
                 lr_mul=1.0,
                 activation_type='lrelu',
                 minibatch_std_group_size=0,
                 minibatch_std_channels=1):
        """Initializes with block settings.

        Args:
            in_channels: Number of channels of the input tensor.
            out_channels: Number of channels of the output tensor.
            kernel_size: Size of the convolutional kernels. (default: 3)
            add_bias: Whether to add bias onto the convolutional result.
                (default: True)
            scale_factor: Scale factor for downsampling. `1` means skip
                downsampling. (default: 1)
            filtering_kernel: Kernel used for filtering before downsampling.
                (default: (1, 3, 3, 1))
            use_wscale: Whether to use weight scaling. (default: True)
            wscale_gain: Gain factor for weight scaling. (default: _WSCALE_GAIN)
            lr_mul: Learning multiplier for both weight and bias. (default: 1.0)
            activation_type: Type of activation. Support `linear` and `lrelu`.
                (default: `lrelu`)
            minibatch_std_group_size: Group size for the minibatch standard
                deviation layer. 0 means disable. (default: 0)
            minibatch_std_channels: Number of new channels after the minibatch
                standard deviation layer. (default: 1)

        Raises:
            NotImplementedError: If the `activation_type` is not supported.
        """
        super().__init__()

        if minibatch_std_group_size > 1:
            in_channels = in_channels + minibatch_std_channels
            self.mbstd = MiniBatchSTDLayer(group_size=minibatch_std_group_size,
                                           new_channels=minibatch_std_channels)
        else:
            self.mbstd = nn.Identity()

        if scale_factor > 1:
            extra_padding = kernel_size - scale_factor
            self.filter = DownsamplingLayer(scale_factor=1,
                                            kernel=filtering_kernel,
                                            extra_padding=extra_padding)
            self.stride = scale_factor
            self.padding = 0  # Padding is done in `DownsamplingLayer`.
        else:
            self.filter = nn.Identity()
            assert kernel_size % 2 == 1
            self.stride = 1
            self.padding = kernel_size // 2

        weight_shape = (out_channels, in_channels, kernel_size, kernel_size)
        fan_in = kernel_size * kernel_size * in_channels
        wscale = wscale_gain / np.sqrt(fan_in)
        if use_wscale:
            self.weight = nn.Parameter(torch.randn(*weight_shape) / lr_mul)
            self.wscale = wscale * lr_mul
        else:
            self.weight = nn.Parameter(
                torch.randn(*weight_shape) * wscale / lr_mul)
            self.wscale = lr_mul

        if add_bias:
            self.bias = nn.Parameter(torch.zeros(out_channels))
        else:
            self.bias = None
        self.bscale = lr_mul

        if activation_type == 'linear':
            self.activate = nn.Identity()
            self.activate_scale = 1.0
        elif activation_type == 'lrelu':
            self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
            self.activate_scale = np.sqrt(2.0)
        else:
            raise NotImplementedError(f'Not implemented activation function: '
                                      f'`{activation_type}`!')

    def forward(self, x):
        x = self.mbstd(x)
        x = self.filter(x)
        weight = self.weight * self.wscale
        bias = self.bias * self.bscale if self.bias is not None else None
        x = F.conv2d(x,
                     weight=weight,
                     bias=bias,
                     stride=self.stride,
                     padding=self.padding)
        x = self.activate(x) * self.activate_scale
        return x


class DenseBlock(nn.Module):
    """Implements the dense block.

    Basically, this block executes fully-connected layer and activation layer.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 add_bias=True,
                 use_wscale=True,
                 wscale_gain=_WSCALE_GAIN,
                 lr_mul=1.0,
                 activation_type='lrelu'):
        """Initializes with block settings.

        Args:
            in_channels: Number of channels of the input tensor.
            out_channels: Number of channels of the output tensor.
            add_bias: Whether to add bias onto the fully-connected result.
                (default: True)
            use_wscale: Whether to use weight scaling. (default: True)
            wscale_gain: Gain factor for weight scaling. (default: _WSCALE_GAIN)
            lr_mul: Learning multiplier for both weight and bias. (default: 1.0)
            activation_type: Type of activation. Support `linear` and `lrelu`.
                (default: `lrelu`)

        Raises:
            NotImplementedError: If the `activation_type` is not supported.
        """
        super().__init__()
        weight_shape = (out_channels, in_channels)
        wscale = wscale_gain / np.sqrt(in_channels)
        if use_wscale:
            self.weight = nn.Parameter(torch.randn(*weight_shape) / lr_mul)
            self.wscale = wscale * lr_mul
        else:
            self.weight = nn.Parameter(
                torch.randn(*weight_shape) * wscale / lr_mul)
            self.wscale = lr_mul

        if add_bias:
            self.bias = nn.Parameter(torch.zeros(out_channels))
        else:
            self.bias = None
        self.bscale = lr_mul

        if activation_type == 'linear':
            self.activate = nn.Identity()
            self.activate_scale = 1.0
        elif activation_type == 'lrelu':
            self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
            self.activate_scale = np.sqrt(2.0)
        else:
            raise NotImplementedError(f'Not implemented activation function: '
                                      f'`{activation_type}`!')

    def forward(self, x):
        if x.ndim != 2:
            x = x.view(x.shape[0], -1)
        bias = self.bias * self.bscale if self.bias is not None else None
        x = F.linear(x, weight=self.weight * self.wscale, bias=bias)
        x = self.activate(x) * self.activate_scale
        return x