File size: 7,026 Bytes
bd87e2e
 
 
 
 
 
 
 
 
52f8f2b
e774b65
52f8f2b
ae2d652
bd87e2e
e774b65
bd87e2e
6deedc6
bd87e2e
3927aba
6deedc6
 
 
bd87e2e
6deedc6
 
 
bd87e2e
6deedc6
 
 
bd87e2e
6deedc6
 
 
 
 
 
 
 
bd87e2e
 
6deedc6
 
bd87e2e
6deedc6
bd87e2e
 
 
112d8a8
bd87e2e
 
 
 
 
 
 
 
 
 
 
 
 
 
a94775f
bd87e2e
 
 
a94775f
 
 
 
 
 
 
bd87e2e
 
ae2d652
b609195
 
 
 
 
 
 
 
bd87e2e
 
 
e774b65
bd87e2e
 
112d8a8
bd87e2e
eeeef15
 
 
 
 
bd87e2e
 
e774b65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2460e4b
e774b65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import subprocess
from pathlib import Path
import einops
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torch import nn
from torchvision.utils import save_image
from huggingface_hub.hf_api import HfApi
import streamlit as st

hfapi = HfApi()


class Generator(nn.Module):
    def __init__(self, num_channels=4, latent_dim=100, hidden_size=64):
        super(Generator, self).__init__()
        self.model = nn.Sequential(
            # input is Z, going into a convolution
            nn.ConvTranspose2d(latent_dim, hidden_size * 8, 4, 1, 0, bias=False),
            nn.BatchNorm2d(hidden_size * 8),
            nn.ReLU(True),
            # state size. (hidden_size*8) x 4 x 4
            nn.ConvTranspose2d(hidden_size * 8, hidden_size * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(hidden_size * 4),
            nn.ReLU(True),
            # state size. (hidden_size*4) x 8 x 8
            nn.ConvTranspose2d(hidden_size * 4, hidden_size * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(hidden_size * 2),
            nn.ReLU(True),
            # state size. (hidden_size*2) x 16 x 16
            nn.ConvTranspose2d(hidden_size * 2, hidden_size, 4, 2, 1, bias=False),
            nn.BatchNorm2d(hidden_size),
            nn.ReLU(True),
            # state size. (hidden_size) x 32 x 32
            nn.ConvTranspose2d(hidden_size, num_channels, 4, 2, 1, bias=False),
            nn.Tanh()
            # state size. (num_channels) x 64 x 64
        )

    def forward(self, noise):
        pixel_values = self.model(noise)

        return pixel_values


@torch.no_grad()
def interpolate(model, save_dir='./lerp/', frames=100, rows=8, cols=8):
    save_dir = Path(save_dir)
    save_dir.mkdir(exist_ok=True, parents=True)

    z1 = torch.randn(rows * cols, 100, 1, 1)
    z2 = torch.randn(rows * cols, 100, 1, 1)

    zs = []
    for i in range(frames):
        alpha = i / frames
        z = (1 - alpha) * z1 + alpha * z2
        zs.append(z)

    zs += zs[::-1]  # also go in reverse order to complete loop

    frames = []
    for i, z in enumerate(zs):
        imgs = model(z)

        save_image(imgs, save_dir / f"{i:03}.png", normalize=True)
        img = Image.open(save_dir / f"{i:03}.png").convert('RGBA')
        img.putalpha(255)
        frames.append(img)
        img.save(save_dir / f"{i:03}.png")
    frames[0].save("out.gif", format="GIF", append_images=frames,
                   save_all=True, duration=100, loop=1)


def predict(model_name, choice, seed):
    try:
        model = Generator(3)
        weights_path = hf_hub_download(f'huggingnft/{model_name}', 'pytorch_model.bin')
        model.load_state_dict(torch.load(weights_path, map_location=torch.device('cpu')))
    except:
        model = Generator(4)
        weights_path = hf_hub_download(f'huggingnft/{model_name}', 'pytorch_model.bin')
        model.load_state_dict(torch.load(weights_path, map_location=torch.device('cpu')))
    torch.manual_seed(seed)

    if choice == 'interpolation':
        interpolate(model)
        return 'out.gif'
    else:
        z = torch.randn(64, 100, 1, 1)
        punks = model(z)
        save_image(punks, "image.png", normalize=True)
        img = Image.open(f"image.png").convert('RGBA')
        img.putalpha(255)
        img.save("image.png")
        return 'image.png'


model_names = [model.modelId[model.modelId.index("/") + 1:] for model in hfapi.list_models(author="huggingnft")]

st.set_page_config(page_title="Hugging NFT")

st.title("Hugging NFT")
st.sidebar.markdown(
    """
<style>
.aligncenter {
    text-align: center;
}
</style>
<p class="aligncenter">
    <img src="https://raw.githubusercontent.com/AlekseyKorshuk/optimum-transformers/master/data/social_preview.png" width="300" />
</p>
""",
    unsafe_allow_html=True,
)
st.sidebar.markdown(
    """
<style>
.aligncenter {
    text-align: center;
}
</style>

<p style='text-align: center'>
<a href="https://github.com/AlekseyKorshuk/huggingnft" target="_blank">GitHub</a>
</p>

<p class="aligncenter">
    <a href="https://github.com/AlekseyKorshuk/huggingnft" target="_blank"> 
        <img src="https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social"/>
    </a>
</p>
<p class="aligncenter">
    <a href="https://twitter.com/alekseykorshuk" target="_blank"> 
        <img src="https://img.shields.io/twitter/follow/alekseykorshuk?style=social"/>
    </a>
</p>
    """,
    unsafe_allow_html=True,
)

st.markdown(
    "🤗 [Hugging NFT](https://github.com/AlekseyKorshuk/huggingnft) - Generate NFT by OpenSea collection name.")

st.markdown(
    "🚀️ SN-GAN used to train all models.")

st.markdown(
    "⁉️ Want to train your model? Check [project repository](https://github.com/AlekseyKorshuk/huggingnft) and make this in few clicks!")
#
# st.markdown("🚀 Up to 1ms on Bert-based transformers")
#
# st.markdown(
#     "‼️ NOTE: This Space **does not show** the real power of this project because: low recources, not possbile to optimize models. Check [project repository](https://github.com/AlekseyKorshuk/optimum-transformers) with real bechmarks!")

# st.sidebar.header("Settings:")
model_name = st.selectbox(
    'Choose model:',
    model_names)

output_type = st.selectbox(
    'Output type:',
    ['image', 'interpolation'])

seed_value = st.slider("Seed:",
                       min_value=1,
                       max_value=1000,
                       step=1,
                       value=100,
                       )

model_html = """

<div class="inline-flex flex-col" style="line-height: 1.5;">
    <div class="flex">
        <div
\t\t\tstyle="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;USER_PROFILE&#39;)">
        </div>
    </div>
    <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
    <div style="text-align: center; font-size: 16px; font-weight: 800">USER_NAME</div>
    <a href="https://genius.com/artists/USER_HANDLE">
    \t<div style="text-align: center; font-size: 14px;">@USER_HANDLE</div>
    </a>
</div>
"""

if st.button("Run"):
    with st.spinner(text=f"Generating..."):
        st.image(predict(model_name, output_type, seed_value))
    st.subheader("Please star project repository, this space and follow my Twitter:")
    st.markdown(
        """
    <style>
    .aligncenter {
        text-align: center;
    }
    </style>
    <p class="aligncenter">
        <a href="https://github.com/AlekseyKorshuk/huggingnft" target="_blank">
            <img src="https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social"/>
        </a>
    </p>
    <p class="aligncenter">
        <a href="https://twitter.com/alekseykorshuk" target="_blank">
            <img src="https://img.shields.io/twitter/follow/alekseykorshuk?style=social"/>
        </a>
    </p>
        """,
        unsafe_allow_html=True,
    )