File size: 8,419 Bytes
5e5faf7
 
 
 
 
98c3ab4
5e5faf7
 
 
 
 
 
e196b57
5e5faf7
 
 
 
 
 
 
4e206a5
5e5faf7
 
8d454d8
 
 
5c9af2e
5e5faf7
 
 
 
 
 
e728a84
5e5faf7
 
 
 
 
 
 
 
 
0262342
5e5faf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d454d8
c3b9254
 
8d454d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c9af2e
 
8d454d8
5e5faf7
 
 
 
 
 
 
 
 
 
 
 
 
 
fe146a2
5c9af2e
 
 
c3b9254
5c9af2e
 
e196b57
5e5faf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e196b57
98c3ab4
8d454d8
e196b57
98c3ab4
15822d1
5e5faf7
8d454d8
c3b9254
98c3ab4
5e5faf7
 
 
 
 
8d454d8
5e5faf7
 
e728a84
5e5faf7
 
0262342
5e5faf7
5c9af2e
 
 
 
 
5e5faf7
e728a84
5e5faf7
 
 
e728a84
5e5faf7
e728a84
98c3ab4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e5faf7
98c3ab4
 
 
 
 
 
 
 
 
 
5e5faf7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import pandas as pd
import numpy as np
import streamlit as st

from models import Generator, Discriminrator
from StyleMix import style_mix
import torch
import torchvision.transforms as T
from torchvision.utils import make_grid
from PIL import Image

from streamlit_lottie import st_lottie
from streamlit_option_menu import option_menu
import requests

device = 'cuda' if torch.cuda.is_available() else 'cpu'


model_name = {
    "aurora": 'huggan/fastgan-few-shot-aurora',
    "painting": 'huggan/fastgan-few-shot-painting',
    "shell": 'huggan/fastgan-few-shot-shells',
    "fauvism": 'huggan/fastgan-few-shot-fauvism-still-life',
    "universe": 'huggan/fastgan-few-shot-universe',
    "grumpy cat": 'huggan/fastgan-few-shot-grumpy-cat',
    "anime": 'huggan/fastgan-few-shot-anime-face',
    "moon gate": 'huggan/fastgan-few-shot-moongate',
}

#@st.cache(allow_output_mutation=True)
def load_generator(model_name_or_path):
    generator = Generator(in_channels=256, out_channels=3)
    generator = generator.from_pretrained(model_name_or_path, in_channels=256, out_channels=3)
    _ = generator.to(device)
    _ = generator.eval()

    return generator

def _denormalize(input: torch.Tensor) -> torch.Tensor:
    return (input * 127.5) + 127.5


def generate_images(generator, number_imgs):
    noise = torch.zeros(number_imgs, 256, 1, 1, device=device).normal_(0.0, 1.0)
    with torch.no_grad():
        gan_images, _ = generator(noise)

    gan_images = _denormalize(gan_images.detach()).cpu()
    gan_images = [i for i in gan_images]
    gan_images = [make_grid(i, nrow=1, normalize=True) for i in gan_images]
    gan_images = [i.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy() for i in gan_images]
    gan_images = [Image.fromarray(i) for i in gan_images]
    return gan_images

def load_lottieurl(url: str):
    r = requests.get(url)
    if r.status_code != 200:
        return None
    return r.json()

def show_model_summary(expanded):
    st.subheader("Model gallery")
    with st.expander('', expanded=expanded):
        col1, col2, col3, col4 = st.columns(4)
        with col1:
            st.markdown('Fauvism GAN [model](https://huggingface.co/huggan/fastgan-few-shot-fauvism-still-life)', unsafe_allow_html=True)
            st.image('fauvism.png', width=200)
            st.markdown('Painting GAN [model](https://huggingface.co/huggan/fastgan-few-shot-painting)', unsafe_allow_html=True)
            st.image('painting.png', width=200)

        with col2:
            st.markdown('Aurora GAN [model](https://huggingface.co/huggan/fastgan-few-shot-aurora)', unsafe_allow_html=True)
            st.image('aurora.png', width=200)
            st.markdown('Universe GAN [model](https://huggingface.co/huggan/fastgan-few-shot-universe)', unsafe_allow_html=True)
            st.image('universe.png', width=200)

        with col3:
            st.markdown('Anime GAN [model](https://huggingface.co/huggan/fastgan-few-shot-anime-face)', unsafe_allow_html=True)
            st.image('anime.png', width=200)
            st.markdown('Shell GAN [model](https://huggingface.co/huggan/fastgan-few-shot-shells)', unsafe_allow_html=True)
            st.image('shell.png', width=200)

        with col4:
            st.markdown('Grumpy cat GAN [model](https://huggingface.co/huggan/fastgan-few-shot-grumpy-cat)', unsafe_allow_html=True)
            st.image('grumpy_cat.png', width=200)
            st.markdown('Moon gate GAN [model](https://huggingface.co/huggan/fastgan-few-shot-moongate)', unsafe_allow_html=True)
            st.image('moon_gate.png', width=200)


def main():

    st.set_page_config(
        page_title="FastGAN Generator",
        page_icon="🖥️",
        layout="wide",
        initial_sidebar_state="expanded"
    )

    lottie_penguin = load_lottieurl('https://assets7.lottiefiles.com/packages/lf20_mm4bsl3l.json')

    with st.sidebar:
        st_lottie(lottie_penguin, height=200)
        choose = option_menu(None, ["Model Gallery", "Create your own images"],
                             icons=['stack', 'file-plus'],
                             menu_icon="cast", default_index=0,
                             styles={
                                "container": {"padding": ".0rem", "font-size": "14px"},
                                "nav-link-selected": {"color": "#000000", "font-size": "16px"},
                            }
                             )
    st.sidebar.markdown(
        """
    ___
    <p style='text-align: center'>
    FastGAN is an few-shot GAN model that generates images of several types!
    </p>
    <p style='text-align: center'>
    Model training and Space creation by
    <br/>
    <a href="https://huggingface.co/vumichien" target="_blank">Chien Vu</a> | <a href="https://huggingface.co/geninhu" target="_blank">Nhu Hoang</a>
    <br/>
    </p>

    <p style='text-align: center'>
    based on
    <br/>
    <a href="https://github.com/silentz/Towards-Faster-And-Stabilized-GAN-Training-For-High-Fidelity-Few-Shot-Image-Synthesis" target="_blank">FastGAN model</a> | <a href="https://arxiv.org/abs/2101.04775" target="_blank">Article</a>
    </p>
            """,
        unsafe_allow_html=True,
    )

    if choose == 'Model Gallery':
        st.header("Welcome to FastGAN")
        show_model_summary(True)
    elif choose == 'Create your own images':
        st.header("Generate images")
        col11, col12, col13 = st.columns([3,3.5,3.5])
        with col11:
            img_type = st.selectbox("Choose type of image to generate", index=0,
                                    options=["aurora", "anime", "painting", "fauvism", "shell", "universe", "grumpy cat", "moon gate"])
                                    
            number_imgs = st.slider('How many images you want to generate ?', min_value=1, max_value=5)
            if number_imgs is None:
                st.write('Invalid number ! Please insert number of images to generate !')
                raise ValueError('Invalid number ! Please insert number of images to generate !')

            generate_button = st.button('Get Image')
            if generate_button:
                st.markdown("""
                    <small><i>Predictions may take up to 1 minute under high load. Please stand by.</i></small>
                """,
                unsafe_allow_html=True,)

        if generate_button:
            with col11:
                with st.spinner(text=f"Loading selected model..."):
                    generator = load_generator(model_name[img_type])
                with st.spinner(text=f"Generating images..."):
                    gan_images = generate_images(generator, number_imgs)
            with col12:
                st.image(gan_images[0], width=300)
            if len(gan_images) > 1:
                with col13:
                    if len(gan_images) <= 2:
                        st.image(gan_images[1], width=300)
                    else:
                        st.image(gan_images[1:], width=150)
                        
    elif choose == 'Style mix':
        st.header("Style mix")
        st.markdown(
            """
        <p style='text-align: left'>
        Get the style representations of 2 images generated from the model to create a new one that mixes the style of two.
        </p>
                """,
            unsafe_allow_html=True,
        )
        st.markdown("""___""")
        col21, col22 = st.columns([3, 6])
        with col21:
            img_type = st.selectbox("Choose type of image to mix", index=0,
                                    options=["aurora", "anime", "painting", "fauvism", "shell", "universe", "grumpy cat", "moon gate"])
            number_imgs = st.slider('How many images you want to generate ?', min_value=1, max_value=3)
            generate_button = st.button('Mix style')

        if generate_button:
            with col21:
                with st.spinner(text=f"Mixing styles..."):
                    mix_imgs = style_mix(model_name[img_type], number_imgs, device)
                    mix_imgs = make_grid(mix_imgs, nrow=number_imgs+1, normalize=True)
                    mix_imgs = mix_imgs.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
                    mix_imgs = Image.fromarray(mix_imgs)
            with col22:
                st.image(mix_imgs, width=600)
                

if __name__ == '__main__':
    main()