Spaces:
Runtime error
Runtime error
File size: 6,067 Bytes
5e5faf7 4e206a5 5e5faf7 8d454d8 5e5faf7 e728a84 5e5faf7 0262342 5e5faf7 8d454d8 5e5faf7 8d454d8 5e5faf7 8d454d8 5e5faf7 8d454d8 5e5faf7 8d454d8 5e5faf7 e728a84 5e5faf7 0262342 5e5faf7 e728a84 5e5faf7 e728a84 5e5faf7 e728a84 5e5faf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import pandas as pd
import numpy as np
import streamlit as st
from models import Generator, Discriminrator
from utils import image_to_base64
import torch
import torchvision.transforms as T
from torchvision.utils import make_grid
from PIL import Image
from streamlit_lottie import st_lottie
import requests
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model_name = {
"aurora": 'huggan/fastgan-few-shot-aurora',
"painting": 'huggan/fastgan-few-shot-painting',
"shell": 'huggan/fastgan-few-shot-shells',
"fauvism": 'huggan/fastgan-few-shot-fauvism-still-life',
"universe": 'huggan/fastgan-few-shot-universe',
"grumpy cat": 'huggan/fastgan-few-shot-grumpy-cat',
"anime": 'huggan/fastgan-few-shot-anime-face',
}
#@st.cache(allow_output_mutation=True)
def load_generator(model_name_or_path):
generator = Generator(in_channels=256, out_channels=3)
generator = generator.from_pretrained(model_name_or_path, in_channels=256, out_channels=3)
_ = generator.to(device)
_ = generator.eval()
return generator
def _denormalize(input: torch.Tensor) -> torch.Tensor:
return (input * 127.5) + 127.5
def generate_images(generator, number_imgs):
noise = torch.zeros(number_imgs, 256, 1, 1, device=device).normal_(0.0, 1.0)
with torch.no_grad():
gan_images, _ = generator(noise)
gan_images = _denormalize(gan_images.detach()).cpu()
gan_images = [i for i in gan_images]
gan_images = [make_grid(i, nrow=1, normalize=True) for i in gan_images]
gan_images = [i.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy() for i in gan_images]
gan_images = [Image.fromarray(i) for i in gan_images]
return gan_images
def load_lottieurl(url: str):
r = requests.get(url)
if r.status_code != 200:
return None
return r.json()
def show_model_summary(expanded):
with st.expander("Model gallery", expanded=expanded):
col1, col2, col3, col4 = st.columns(4)
with col1:
st.markdown('Fauvism GAN [model](https://huggingface.co/huggan/fastgan-few-shot-fauvism-still-life)', unsafe_allow_html=True)
st.image('fauvism.png', width=200)
st.markdown('Painting GAN [model](https://huggingface.co/huggan/fastgan-few-shot-painting)', unsafe_allow_html=True)
st.image('painting.png', width=200)
with col2:
st.markdown('Aurora GAN [model](https://huggingface.co/huggan/fastgan-few-shot-aurora)', unsafe_allow_html=True)
st.image('aurora.png', width=200)
st.markdown('Universe GAN [model](https://huggingface.co/huggan/fastgan-few-shot-universe)', unsafe_allow_html=True)
st.image('universe.png', width=200)
with col3:
st.markdown('Anime GAN [model](https://huggingface.co/huggan/fastgan-few-shot-anime-face)', unsafe_allow_html=True)
st.image('anime.png', width=200)
st.markdown('Shell GAN [model](https://huggingface.co/huggan/fastgan-few-shot-shells)', unsafe_allow_html=True)
st.image('shell.png', width=200)
with col4:
st.markdown('Grumpy cat GAN [model](https://huggingface.co/huggan/fastgan-few-shot-grumpy-cat)', unsafe_allow_html=True)
st.image('grumpy_cat.png', width=200)
def main():
st.set_page_config(
page_title="FastGAN Generator",
page_icon="🖥️",
layout="wide",
initial_sidebar_state="expanded"
)
lottie_penguin = load_lottieurl('https://assets7.lottiefiles.com/packages/lf20_mm4bsl3l.json')
with st.sidebar:
st_lottie(lottie_penguin, height=200)
st.sidebar.markdown(
"""
___
<p style='text-align: center'>
FastGAN is an few-shot GAN model that generates images of several types!
</p>
<p style='text-align: center'>
Model training and Space creation by
<br/>
<a href="https://huggingface.co/vumichien" target="_blank">Chien Vu</a> | <a href="https://huggingface.co/geninhu" target="_blank">Nhu Hoang</a>
<br/>
</p>
<p style='text-align: center'>
based on
<br/>
<a href="https://github.com/silentz/Towards-Faster-And-Stabilized-GAN-Training-For-High-Fidelity-Few-Shot-Image-Synthesis" target="_blank">FastGAN model</a> | <a href="https://arxiv.org/abs/2101.04775" target="_blank">Article</a>
</p>
""",
unsafe_allow_html=True,
)
st.header("Welcome to FastGAN")
checked = st.checkbox('Click here if you want to create one of your own !')
if not checked:
show_model_summary(True)
if checked:
col11, col12, col13 = st.columns([2.9,3.05,3.05])
with col11:
img_type = st.selectbox("Choose type of image to generate", index=0,
options=["aurora", "anime", "painting", "fauvism", "shell", "universe", "grumpy cat"])
# with col12:
number_imgs = st.slider('How many images you want to generate ?', min_value=1, max_value=5)
if number_imgs is None:
st.write('Invalid number ! Please insert number of images to generate !')
raise ValueError('Invalid number ! Please insert number of images to generate !')
generate_button = st.button('Get Image')
if generate_button:
st.markdown("""
<small><i>Predictions may take up to 1 minute under high load. Please stand by.</i></small>
""",
unsafe_allow_html=True,)
if generate_button:
generator = load_generator(model_name[img_type])
gan_images = generate_images(generator, number_imgs)
with col12:
st.image(gan_images[0], width=300)
if len(gan_images) > 1:
with col13:
if len(gan_images) <= 2:
st.image(gan_images[1], width=300)
else:
st.image(gan_images[1:], width=150)
if __name__ == '__main__':
main()
|