File size: 20,021 Bytes
d24b25a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6c4d8b
 
 
 
 
 
 
d24b25a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
#@title Gradio demo (used in space: )

from matplotlib import pyplot as plt
from huggingface_hub import PyTorchModelHubMixin
import numpy as np
import gradio as gr


#@title Defining Generator and associated code ourselves without the GPU requirements
import os
import json
import multiprocessing
from random import random
import math
from math import log2, floor
from functools import partial
from contextlib import contextmanager, ExitStack
from pathlib import Path
from shutil import rmtree

import torch
from torch.cuda.amp import autocast, GradScaler
from torch.optim import Adam
from torch import nn, einsum
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torch.autograd import grad as torch_grad
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP

from PIL import Image
import torchvision
from torchvision import transforms
from kornia.filters import filter2d

from tqdm import tqdm
from einops import rearrange, reduce, repeat

from adabelief_pytorch import AdaBelief

# helpers


def DiffAugment(x, types=[]):
    for p in types:
        for f in AUGMENT_FNS[p]:
            x = f(x)
    return x.contiguous()

def exists(val):
    return val is not None

@contextmanager
def null_context():
    yield

def combine_contexts(contexts):
    @contextmanager
    def multi_contexts():
        with ExitStack() as stack:
            yield [stack.enter_context(ctx()) for ctx in contexts]
    return multi_contexts

def is_power_of_two(val):
    return log2(val).is_integer()

def default(val, d):
    return val if exists(val) else d

def set_requires_grad(model, bool):
    for p in model.parameters():
        p.requires_grad = bool

def cycle(iterable):
    while True:
        for i in iterable:
            yield i

def raise_if_nan(t):
    if torch.isnan(t):
        raise NanException

def gradient_accumulate_contexts(gradient_accumulate_every, is_ddp, ddps):
    if is_ddp:
        num_no_syncs = gradient_accumulate_every - 1
        head = [combine_contexts(map(lambda ddp: ddp.no_sync, ddps))] * num_no_syncs
        tail = [null_context]
        contexts =  head + tail
    else:
        contexts = [null_context] * gradient_accumulate_every

    for context in contexts:
        with context():
            yield

def evaluate_in_chunks(max_batch_size, model, *args):
    split_args = list(zip(*list(map(lambda x: x.split(max_batch_size, dim=0), args))))
    chunked_outputs = [model(*i) for i in split_args]
    if len(chunked_outputs) == 1:
        return chunked_outputs[0]
    return torch.cat(chunked_outputs, dim=0)

def slerp(val, low, high):
    low_norm = low / torch.norm(low, dim=1, keepdim=True)
    high_norm = high / torch.norm(high, dim=1, keepdim=True)
    omega = torch.acos((low_norm * high_norm).sum(1))
    so = torch.sin(omega)
    res = (torch.sin((1.0 - val) * omega) / so).unsqueeze(1) * low + (torch.sin(val * omega) / so).unsqueeze(1) * high
    return res

def safe_div(n, d):
    try:
        res = n / d
    except ZeroDivisionError:
        prefix = '' if int(n >= 0) else '-'
        res = float(f'{prefix}inf')
    return res

# loss functions

def gen_hinge_loss(fake, real):
    return fake.mean()

def hinge_loss(real, fake):
    return (F.relu(1 + real) + F.relu(1 - fake)).mean()

def dual_contrastive_loss(real_logits, fake_logits):
    device = real_logits.device
    real_logits, fake_logits = map(lambda t: rearrange(t, '... -> (...)'), (real_logits, fake_logits))

    def loss_half(t1, t2):
        t1 = rearrange(t1, 'i -> i ()')
        t2 = repeat(t2, 'j -> i j', i = t1.shape[0])
        t = torch.cat((t1, t2), dim = -1)
        return F.cross_entropy(t, torch.zeros(t1.shape[0], device = device, dtype = torch.long))

    return loss_half(real_logits, fake_logits) + loss_half(-fake_logits, -real_logits)

# helper classes

class NanException(Exception):
    pass

class EMA():
    def __init__(self, beta):
        super().__init__()
        self.beta = beta
    def update_average(self, old, new):
        if not exists(old):
            return new
        return old * self.beta + (1 - self.beta) * new

class RandomApply(nn.Module):
    def __init__(self, prob, fn, fn_else = lambda x: x):
        super().__init__()
        self.fn = fn
        self.fn_else = fn_else
        self.prob = prob
    def forward(self, x):
        fn = self.fn if random() < self.prob else self.fn_else
        return fn(x)

class ChanNorm(nn.Module):
    def __init__(self, dim, eps = 1e-5):
        super().__init__()
        self.eps = eps
        self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
        self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))

    def forward(self, x):
        var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
        mean = torch.mean(x, dim = 1, keepdim = True)
        return (x - mean) / (var + self.eps).sqrt() * self.g + self.b

class PreNorm(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.fn = fn
        self.norm = ChanNorm(dim)

    def forward(self, x):
        return self.fn(self.norm(x))

class Residual(nn.Module):
    def __init__(self, fn):
        super().__init__()
        self.fn = fn

    def forward(self, x):
        return self.fn(x) + x

class SumBranches(nn.Module):
    def __init__(self, branches):
        super().__init__()
        self.branches = nn.ModuleList(branches)
    def forward(self, x):
        return sum(map(lambda fn: fn(x), self.branches))

class Blur(nn.Module):
    def __init__(self):
        super().__init__()
        f = torch.Tensor([1, 2, 1])
        self.register_buffer('f', f)
    def forward(self, x):
        f = self.f
        f = f[None, None, :] * f [None, :, None]
        return filter2d(x, f, normalized=True)

class Noise(nn.Module):
    def __init__(self):
        super().__init__()
        self.weight = nn.Parameter(torch.zeros(1))

    def forward(self, x, noise = None):
        b, _, h, w, device = *x.shape, x.device

        if not exists(noise):
            noise = torch.randn(b, 1, h, w, device = device)

        return x + self.weight * noise

def Conv2dSame(dim_in, dim_out, kernel_size, bias = True):
    pad_left = kernel_size // 2
    pad_right = (pad_left - 1) if (kernel_size % 2) == 0 else pad_left

    return nn.Sequential(
        nn.ZeroPad2d((pad_left, pad_right, pad_left, pad_right)),
        nn.Conv2d(dim_in, dim_out, kernel_size, bias = bias)
    )

# attention

class DepthWiseConv2d(nn.Module):
    def __init__(self, dim_in, dim_out, kernel_size, padding = 0, stride = 1, bias = True):
        super().__init__()
        self.net = nn.Sequential(
            nn.Conv2d(dim_in, dim_in, kernel_size = kernel_size, padding = padding, groups = dim_in, stride = stride, bias = bias),
            nn.Conv2d(dim_in, dim_out, kernel_size = 1, bias = bias)
        )
    def forward(self, x):
        return self.net(x)

class LinearAttention(nn.Module):
    def __init__(self, dim, dim_head = 64, heads = 8, kernel_size = 3):
        super().__init__()
        self.scale = dim_head ** -0.5
        self.heads = heads
        self.dim_head = dim_head
        inner_dim = dim_head * heads

        self.kernel_size = kernel_size
        self.nonlin = nn.GELU()

        self.to_lin_q = nn.Conv2d(dim, inner_dim, 1, bias = False)
        self.to_lin_kv = DepthWiseConv2d(dim, inner_dim * 2, 3, padding = 1, bias = False)

        self.to_q = nn.Conv2d(dim, inner_dim, 1, bias = False)
        self.to_kv = nn.Conv2d(dim, inner_dim * 2, 1, bias = False)

        self.to_out = nn.Conv2d(inner_dim * 2, dim, 1)

    def forward(self, fmap):
        h, x, y = self.heads, *fmap.shape[-2:]

        # linear attention

        lin_q, lin_k, lin_v = (self.to_lin_q(fmap), *self.to_lin_kv(fmap).chunk(2, dim = 1))
        lin_q, lin_k, lin_v = map(lambda t: rearrange(t, 'b (h c) x y -> (b h) (x y) c', h = h), (lin_q, lin_k, lin_v))

        lin_q = lin_q.softmax(dim = -1)
        lin_k = lin_k.softmax(dim = -2)

        lin_q = lin_q * self.scale

        context = einsum('b n d, b n e -> b d e', lin_k, lin_v)
        lin_out = einsum('b n d, b d e -> b n e', lin_q, context)
        lin_out = rearrange(lin_out, '(b h) (x y) d -> b (h d) x y', h = h, x = x, y = y)

        # conv-like full attention

        q, k, v = (self.to_q(fmap), *self.to_kv(fmap).chunk(2, dim = 1))
        q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> (b h) c x y', h = h), (q, k, v))

        k = F.unfold(k, kernel_size = self.kernel_size, padding = self.kernel_size // 2)
        v = F.unfold(v, kernel_size = self.kernel_size, padding = self.kernel_size // 2)

        k, v = map(lambda t: rearrange(t, 'b (d j) n -> b n j d', d = self.dim_head), (k, v))

        q = rearrange(q, 'b c ... -> b (...) c') * self.scale

        sim = einsum('b i d, b i j d -> b i j', q, k)
        sim = sim - sim.amax(dim = -1, keepdim = True).detach()

        attn = sim.softmax(dim = -1)

        full_out = einsum('b i j, b i j d -> b i d', attn, v)
        full_out = rearrange(full_out, '(b h) (x y) d -> b (h d) x y', h = h, x = x, y = y)

        # add outputs of linear attention + conv like full attention

        lin_out = self.nonlin(lin_out)
        out = torch.cat((lin_out, full_out), dim = 1)
        return self.to_out(out)

# dataset

def convert_image_to(img_type, image):
    if image.mode != img_type:
        return image.convert(img_type)
    return image

class identity(object):
    def __call__(self, tensor):
        return tensor

class expand_greyscale(object):
    def __init__(self, transparent):
        self.transparent = transparent

    def __call__(self, tensor):
        channels = tensor.shape[0]
        num_target_channels = 4 if self.transparent else 3

        if channels == num_target_channels:
            return tensor

        alpha = None
        if channels == 1:
            color = tensor.expand(3, -1, -1)
        elif channels == 2:
            color = tensor[:1].expand(3, -1, -1)
            alpha = tensor[1:]
        else:
            raise Exception(f'image with invalid number of channels given {channels}')

        if not exists(alpha) and self.transparent:
            alpha = torch.ones(1, *tensor.shape[1:], device=tensor.device)

        return color if not self.transparent else torch.cat((color, alpha))

def resize_to_minimum_size(min_size, image):
    if max(*image.size) < min_size:
        return torchvision.transforms.functional.resize(image, min_size)
    return image

class ImageDataset(Dataset):
    def __init__(
        self,
        folder,
        image_size,
        transparent = False,
        greyscale = False,
        aug_prob = 0.
    ):
        super().__init__()
        self.folder = folder
        self.image_size = image_size
        self.paths = [p for ext in EXTS for p in Path(f'{folder}').glob(f'**/*.{ext}')]
        assert len(self.paths) > 0, f'No images were found in {folder} for training'

        if transparent:
            num_channels = 4
            pillow_mode = 'RGBA'
            expand_fn = expand_greyscale(transparent)
        elif greyscale:
            num_channels = 1
            pillow_mode = 'L'
            expand_fn = identity()
        else:
            num_channels = 3
            pillow_mode = 'RGB'
            expand_fn = expand_greyscale(transparent)

        convert_image_fn = partial(convert_image_to, pillow_mode)

        self.transform = transforms.Compose([
            transforms.Lambda(convert_image_fn),
            transforms.Lambda(partial(resize_to_minimum_size, image_size)),
            transforms.Resize(image_size),
            RandomApply(aug_prob, transforms.RandomResizedCrop(image_size, scale=(0.5, 1.0), ratio=(0.98, 1.02)), transforms.CenterCrop(image_size)),
            transforms.ToTensor(),
            transforms.Lambda(expand_fn)
        ])

    def __len__(self):
        return len(self.paths)

    def __getitem__(self, index):
        path = self.paths[index]
        img = Image.open(path)
        return self.transform(img)

# augmentations

def random_hflip(tensor, prob):
    if prob > random():
        return tensor
    return torch.flip(tensor, dims=(3,))

class AugWrapper(nn.Module):
    def __init__(self, D, image_size):
        super().__init__()
        self.D = D

    def forward(self, images, prob = 0., types = [], detach = False, **kwargs):
        context = torch.no_grad if detach else null_context

        with context():
            if random() < prob:
                images = random_hflip(images, prob=0.5)
                images = DiffAugment(images, types=types)

        return self.D(images, **kwargs)

# modifiable global variables

norm_class = nn.BatchNorm2d

def upsample(scale_factor = 2):
    return nn.Upsample(scale_factor = scale_factor)

# squeeze excitation classes

# global context network
# https://arxiv.org/abs/2012.13375
# similar to squeeze-excite, but with a simplified attention pooling and a subsequent layer norm

class GlobalContext(nn.Module):
    def __init__(
        self,
        *,
        chan_in,
        chan_out
    ):
        super().__init__()
        self.to_k = nn.Conv2d(chan_in, 1, 1)
        chan_intermediate = max(3, chan_out // 2)

        self.net = nn.Sequential(
            nn.Conv2d(chan_in, chan_intermediate, 1),
            nn.LeakyReLU(0.1),
            nn.Conv2d(chan_intermediate, chan_out, 1),
            nn.Sigmoid()
        )
    def forward(self, x):
        context = self.to_k(x)
        context = context.flatten(2).softmax(dim = -1)
        out = einsum('b i n, b c n -> b c i', context, x.flatten(2))
        out = out.unsqueeze(-1)
        return self.net(out)

# frequency channel attention
# https://arxiv.org/abs/2012.11879

def get_1d_dct(i, freq, L):
    result = math.cos(math.pi * freq * (i + 0.5) / L) / math.sqrt(L)
    return result * (1 if freq == 0 else math.sqrt(2))

def get_dct_weights(width, channel, fidx_u, fidx_v):
    dct_weights = torch.zeros(1, channel, width, width)
    c_part = channel // len(fidx_u)

    for i, (u_x, v_y) in enumerate(zip(fidx_u, fidx_v)):
        for x in range(width):
            for y in range(width):
                coor_value = get_1d_dct(x, u_x, width) * get_1d_dct(y, v_y, width)
                dct_weights[:, i * c_part: (i + 1) * c_part, x, y] = coor_value

    return dct_weights

class FCANet(nn.Module):
    def __init__(
        self,
        *,
        chan_in,
        chan_out,
        reduction = 4,
        width
    ):
        super().__init__()

        freq_w, freq_h = ([0] * 8), list(range(8)) # in paper, it seems 16 frequencies was ideal
        dct_weights = get_dct_weights(width, chan_in, [*freq_w, *freq_h], [*freq_h, *freq_w])
        self.register_buffer('dct_weights', dct_weights)

        chan_intermediate = max(3, chan_out // reduction)

        self.net = nn.Sequential(
            nn.Conv2d(chan_in, chan_intermediate, 1),
            nn.LeakyReLU(0.1),
            nn.Conv2d(chan_intermediate, chan_out, 1),
            nn.Sigmoid()
        )

    def forward(self, x):
        x = reduce(x * self.dct_weights, 'b c (h h1) (w w1) -> b c h1 w1', 'sum', h1 = 1, w1 = 1)
        return self.net(x)

# generative adversarial network

class Generator(nn.Module):
    def __init__(
        self,
        *,
        image_size,
        latent_dim = 256,
        fmap_max = 512,
        fmap_inverse_coef = 12,
        transparent = False,
        greyscale = False,
        attn_res_layers = [],
        freq_chan_attn = False
    ):
        super().__init__()
        resolution = log2(image_size)
        assert is_power_of_two(image_size), 'image size must be a power of 2'

        if transparent:
            init_channel = 4
        elif greyscale:
            init_channel = 1
        else:
            init_channel = 3

        fmap_max = default(fmap_max, latent_dim)

        self.initial_conv = nn.Sequential(
            nn.ConvTranspose2d(latent_dim, latent_dim * 2, 4),
            norm_class(latent_dim * 2),
            nn.GLU(dim = 1)
        )

        num_layers = int(resolution) - 2
        features = list(map(lambda n: (n,  2 ** (fmap_inverse_coef - n)), range(2, num_layers + 2)))
        features = list(map(lambda n: (n[0], min(n[1], fmap_max)), features))
        features = list(map(lambda n: 3 if n[0] >= 8 else n[1], features))
        features = [latent_dim, *features]

        in_out_features = list(zip(features[:-1], features[1:]))

        self.res_layers = range(2, num_layers + 2)
        self.layers = nn.ModuleList([])
        self.res_to_feature_map = dict(zip(self.res_layers, in_out_features))

        self.sle_map = ((3, 7), (4, 8), (5, 9), (6, 10))
        self.sle_map = list(filter(lambda t: t[0] <= resolution and t[1] <= resolution, self.sle_map))
        self.sle_map = dict(self.sle_map)

        self.num_layers_spatial_res = 1

        for (res, (chan_in, chan_out)) in zip(self.res_layers, in_out_features):
            image_width = 2 ** res

            attn = None
            if image_width in attn_res_layers:
                attn = PreNorm(chan_in, LinearAttention(chan_in))

            sle = None
            if res in self.sle_map:
                residual_layer = self.sle_map[res]
                sle_chan_out = self.res_to_feature_map[residual_layer - 1][-1]

                if freq_chan_attn:
                    sle = FCANet(
                        chan_in = chan_out,
                        chan_out = sle_chan_out,
                        width = 2 ** (res + 1)
                    )
                else:
                    sle = GlobalContext(
                        chan_in = chan_out,
                        chan_out = sle_chan_out
                    )

            layer = nn.ModuleList([
                nn.Sequential(
                    upsample(),
                    Blur(),
                    Conv2dSame(chan_in, chan_out * 2, 4),
                    Noise(),
                    norm_class(chan_out * 2),
                    nn.GLU(dim = 1)
                ),
                sle,
                attn
            ])
            self.layers.append(layer)

        self.out_conv = nn.Conv2d(features[-1], init_channel, 3, padding = 1)

    def forward(self, x):
        x = rearrange(x, 'b c -> b c () ()')
        x = self.initial_conv(x)
        x = F.normalize(x, dim = 1)

        residuals = dict()

        for (res, (up, sle, attn)) in zip(self.res_layers, self.layers):
            if exists(attn):
                x = attn(x) + x

            x = up(x)

            if exists(sle):
                out_res = self.sle_map[res]
                residual = sle(x)
                residuals[out_res] = residual

            next_res = res + 1
            if next_res in residuals:
                x = x * residuals[next_res]

        return self.out_conv(x)

# Initialize a generator model
gan_new = Generator(latent_dim=256, image_size=256, attn_res_layers = [32])

# Load from local saved state dict
# gan_new.load_state_dict(torch.load('/content/orbgan_e3_state_dict.pt')) 

# Load from model hub:
class GeneratorWithPyTorchModelHubMixin(gan_new.__class__, PyTorchModelHubMixin):
    pass
gan_new.__class__ = GeneratorWithPyTorchModelHubMixin
gan_new = gan_new.from_pretrained('johnowhitaker/colorb_gan', latent_dim=256, image_size=256, attn_res_layers = [32])

def gen_ims(n_rows):
  ims = gan_new(torch.randn(int(n_rows)**2, 256)).clamp_(0., 1.)
  grid = torchvision.utils.make_grid(ims, nrow=int(n_rows)).permute(1, 2, 0).detach().cpu().numpy()
  return (grid*255).astype(np.uint8)



iface = gr.Interface(fn=gen_ims, 
  inputs=[gr.inputs.Slider(minimum=1, maximum=6, step=1, default=3,label="N rows")], 
  outputs=[gr.outputs.Image(type="numpy", label="Generated Images")],
  title='Demo for Colorbgan  model',
  article = 'A lightweight-gans trained on johnowhitaker/colorbs. See https://huggingface.co/johnowhitaker/orbgan_e1 for training and inference scripts'
)
iface.launch()