File size: 11,774 Bytes
711d615
 
eca6fb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
!pip install openai

# import gradio as gr
import gradio
# import lmdb
# import base64
# import io
# import random
# import time
import json
import copy
# import sqlite3
from urllib.parse import urljoin
import openai


DEFAULT_PROMPT = [
    ["system", "你(assistant)是一名疯狂的摇滚乐手,用户(user)是你的粉丝。"],
    ["user", "我们来玩一个角色扮演游戏吧!请你扮演一名疯狂的摇滚乐手,而我将扮演你的粉丝。"],
    ["assistant", "真是个有趣的游戏!我将扮演一名疯狂的摇滚乐手,而你是我的粉丝。听起来真不错!让我们开始吧!"],
]


# def get_settings(old_state):
#     db_path = './my_app_state'
#     env = lmdb.open(db_path, max_dbs=2*1024*1024)
#     # print(env.stat())
#     txn = env.begin()
#     saved_api_key = txn.get(key=b'api_key').decode('utf-8') or ''
#     txn.commit()
#     env.close()

#     new_state = copy.deepcopy(old_state) or {}
#     new_state['api_key'] = saved_api_key

#     return new_state, saved_api_key


# def save_settings(old_state, api_key_text):
#     db_path = './my_app_state'
#     env = lmdb.open(db_path, max_dbs=2*1024*1024)
#     # print(env.stat())
#     txn = env.begin(write=True)
#     txn.put(key=b'api_key', value=api_key_text.encode('utf-8'))
#     # 提交事务
#     txn.commit()
#     return get_settings(old_state)


def on_click_send_btn(
        old_state, api_key_text, chat_input_role, chat_input, prompt_table, chat_use_prompt, chat_use_history, chat_log,
        temperature, top_p, choices_num, stream, max_tokens, presence_penalty, frequency_penalty, logit_bias,
    ):

    print(prompt_table)
    prompt_table = prompt_table or []

    chat_log = chat_log or []

    chat_log_md = ''
    if chat_use_prompt:
        chat_log_md += '<center>(prompt)</center>\n\n'
        chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)])
        chat_log_md += '\n---\n'
    if True:
        chat_log_md += '<center>(history)</center>\n\n' if chat_use_history else '<center>(not used history)</center>\n\n'
        chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", chat_log)])
        chat_log_md += '\n---\n'

    # if chat_input=='':
    #     return old_state, chat_log, chat_log_md, None, None, chat_input

    try:
        logit_bias_json = json.dumps(logit_bias) if logit_bias else None
    except:
        return old_state, chat_log, chat_log_md, None, None, chat_input

    new_state = copy.deepcopy(old_state) or {}



    req_hist = copy.deepcopy(prompt_table) if chat_use_prompt else []

    if chat_use_history:
        for hh in (chat_log or []):
            req_hist.append(hh)

    if chat_input and chat_input!="":
        req_hist.append([(chat_input_role or 'user'), chat_input])

    openai.api_key = api_key_text

    props = {
        'model': "gpt-3.5-turbo",
        'messages': [xx for xx in map(lambda it: {'role':it[0], 'content':it[1]}, req_hist)],
        'temperature': temperature,
        'top_p': top_p,
        'n': choices_num,
        'stream': stream,
        'presence_penalty': presence_penalty,
        'frequency_penalty': frequency_penalty,
    }
    if max_tokens>0:
        props['max_tokens'] = max_tokens
    if logit_bias_json is not None:
        props['logit_bias'] = logit_bias_json

    props_json = json.dumps(props)

    try:
        completion = openai.ChatCompletion.create(**props)
        print('')
        print(completion)
        the_response_role = completion.choices[0].message.role
        the_response = completion.choices[0].message.content
        print(the_response)
        print('')
        chat_last_resp = json.dumps(completion.__dict__)
        chat_last_resp_dict = json.loads(chat_last_resp)
        chat_last_resp_dict['api_key'] = "hidden by UI"
        chat_last_resp_dict['organization'] = "hidden by UI"
        chat_last_resp = json.dumps(chat_last_resp_dict)

        chat_log_md = ''
        if chat_use_prompt:
            chat_log_md += '<center>(prompt)</center>\n\n'
            chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)])
            chat_log_md += '\n---\n'
        if True:
            chat_log_md += '<center>(history)</center>\n\n' if chat_use_history else '<center>(not used history)</center>\n\n'
            chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", chat_log)])
            chat_log_md += '\n---\n'

        if chat_input and chat_input!="":
            chat_log.append([(chat_input_role or 'user'), chat_input])
            chat_log_md += f"##### `{(chat_input_role or 'user')}`\n\n{chat_input}\n\n"
        chat_log.append([the_response_role, the_response])
        chat_log_md += f"##### `{the_response_role}`\n\n{the_response}\n\n"

        return new_state, chat_log, chat_log_md, chat_last_resp, props_json, ''
    except Exception as error:
        print(error)

        chat_log_md = ''
        if chat_use_prompt:
            chat_log_md += '<center>(prompt)</center>\n\n'
            chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)])
            chat_log_md += '\n---\n'
        if True:
            chat_log_md += '<center>(history)</center>\n\n' if chat_use_history else '<center>(not used history)</center>\n\n'
            chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", chat_log)])
            chat_log_md += '\n---\n'

        # chat_log_md = ''
        # chat_log_md = "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", prompt_table)]) if chat_use_prompt else ''
        # chat_log_md += "\n".join([xx for xx in map(lambda it: f"##### `{it[0]}`\n\n{it[1]}\n\n", hist)])

        chat_log_md += "\n"
        chat_log_md += str(error)
        return new_state, chat_log, chat_log_md, None, props_json, chat_input


def clear_history():
    return [], ""


css = """
.table-wrap .cell-wrap input {min-width:80%}
#api-key-textbox textarea {filter:blur(8px); transition: filter 0.25s}
#api-key-textbox textarea:focus {filter:none}
"""
with gradio.Blocks(title="ChatGPT", css=css) as demo:
    global_state = gradio.State(value={})

    # https://gradio.app/docs
    # https://platform.openai.com/docs/api-reference/chat/create

    with gradio.Tab("ChatGPT"):

        with gradio.Row():
            with gradio.Column(scale=10):
                gradio.Markdown("Go to https://platform.openai.com/account/api-keys to get your API key.")
                api_key_text = gradio.Textbox(label="Your API key", elem_id="api-key-textbox")

        with gradio.Row():
            with gradio.Column(scale=2):
                api_key_refresh_btn = gradio.Button("🔄 Load from browser storage")
                api_key_refresh_btn.click(
                    # get_settings,
                    None,
                    inputs=[global_state],
                    outputs=[global_state, api_key_text],
                    api_name="load-settings",
                    _js="""(global_state, api_key_text)=>{
                        global_state=(global_state??{});
                        global_state['api_key_text']=localStorage?.getItem?.('[gradio][chat-gpt-ui][api_key_text]');
                        return [global_state, global_state['api_key_text']];
                    }""",
                )
            with gradio.Column(scale=2):
                api_key_save_btn = gradio.Button("💾 Save to browser storage")
                api_key_save_btn.click(
                    # save_settings,
                    None,
                    inputs=[global_state, api_key_text],
                    outputs=[global_state, api_key_text],
                    api_name="save-settings",
                    _js="""(global_state, api_key_text)=>{
                        localStorage.setItem('[gradio][chat-gpt-ui][api_key_text]', api_key_text);
                        global_state=(global_state??{});
                        global_state['api_key_text']=localStorage?.getItem?.('[gradio][chat-gpt-ui][api_key_text]');
                        return [global_state, global_state['api_key_text']];
                    }""",
                )

        with gradio.Row():
            with gradio.Column(scale=10):
                with gradio.Box():
                    prompt_table = gradio.Dataframe(
                        type='array',
                        label='Prompt', col_count=(2, 'fixed'), max_cols=2,
                        value=DEFAULT_PROMPT, headers=['role', 'content'], interactive=True,
                    )
                    gradio.Markdown("Will be added to the beginning of the conversation. See https://platform.openai.com/docs/guides/chat/introduction .")


        with gradio.Row():
            with gradio.Column(scale=4):
                with gradio.Box():
                    gradio.Markdown("See https://platform.openai.com/docs/api-reference/chat/create .")
                    chat_temperature = gradio.Slider(label="temperature", value=1, minimum=0, maximum=2)
                    chat_top_p = gradio.Slider(label="top_p", value=1, minimum=0, maximum=1)
                    chat_choices_num = gradio.Slider(label="choices num(n)", value=1, minimum=1, maximum=20)
                    chat_stream = gradio.Checkbox(label="stream", value=False, visible=False)
                    chat_max_tokens = gradio.Slider(label="max_tokens", value=-1, minimum=-1, maximum=4096)
                    chat_presence_penalty = gradio.Slider(label="presence_penalty", value=0, minimum=-2, maximum=2)
                    chat_frequency_penalty = gradio.Slider(label="frequency_penalty", value=0, minimum=-2, maximum=2)
                    chat_logit_bias = gradio.Textbox(label="logit_bias", visible=False)
                pass
            with gradio.Column(scale=8):
                with gradio.Row():
                    with gradio.Column(scale=10):
                        chat_log = gradio.State()
                        with gradio.Box():
                            chat_log_box = gradio.Markdown(label='chat history')
                        chat_input_role = gradio.Textbox(lines=1, label='role', value='user')
                        chat_input = gradio.Textbox(lines=4, label='input')
                with gradio.Row():
                    chat_clear_history_btn = gradio.Button("clear history")
                    chat_clear_history_btn.click(clear_history, inputs=[], outputs=[chat_log, chat_log_box])
                    chat_use_prompt = gradio.Checkbox(label='send with prompt', value=True)
                    chat_use_history = gradio.Checkbox(label='send with history', value=True)
                    chat_send_btn = gradio.Button("send")
                pass

        with gradio.Row():
            chat_last_req = gradio.JSON(label='last request')
            chat_last_resp = gradio.JSON(label='last response')
            chat_send_btn.click(
                on_click_send_btn,
                inputs=[
                    global_state, api_key_text, chat_input_role, chat_input, prompt_table, chat_use_prompt, chat_use_history, chat_log,
                    chat_temperature, chat_top_p, chat_choices_num, chat_stream, chat_max_tokens, chat_presence_penalty, chat_frequency_penalty, chat_logit_bias,
                ],
                outputs=[global_state, chat_log, chat_log_box, chat_last_resp, chat_last_req, chat_input],
                api_name="click-send-btn",
            )

        pass



    with gradio.Tab("Settings"):
        gradio.Markdown('Currently nothing.')
        pass


if __name__ == "__main__":
    demo.queue(concurrency_count=20).launch()