Spaces:
Runtime error
Runtime error
File size: 11,620 Bytes
7431acd 76918d0 7431acd 905c612 7431acd 76918d0 7431acd 76918d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
from pydantic import NoneStr
import os
import mimetypes
import requests
import tempfile
import gradio as gr
import openai
import re
import json
from transformers import pipeline
import matplotlib.pyplot as plt
import plotly.express as px
class SentimentAnalyzer:
def __init__(self):
self.model="facebook/bart-large-mnli"
def analyze_sentiment(self, text):
pipe = pipeline("zero-shot-classification", model=self.model)
label=["positive","negative","neutral"]
result = pipe(text, label)
sentiment_scores= {result['labels'][0]:result['scores'][0],result['labels'][1]:result['scores'][1],result['labels'][2]:result['scores'][2]}
sentiment_scores_str = f"Positive: {sentiment_scores['positive']:.2f}, Neutral: {sentiment_scores['neutral']:.2f}, Negative: {sentiment_scores['negative']:.2f}"
return sentiment_scores_str
def emotion_analysis(self,text):
prompt = f""" Your task is to analyze {text} and predict the emotion using scores. Emotions are categorized into the following list: Sadness, Happiness, Joy, Fear, Disgust, and Anger. You need to provide the emotion with the highest score. The scores should be in the range of 0.0 to 1.0, where 1.0 represents the highest intensity of the emotion.
Please analyze the text and provide the output in the following format: emotion: score [with one result having the highest score]."""
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt,
temperature=1,
max_tokens=60,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
message = response.choices[0].text.strip().replace("\n","")
print(message)
return message
def analyze_sentiment_for_graph(self, text):
pipe = pipeline("zero-shot-classification", model=self.model)
label=["positive", "negative", "neutral"]
result = pipe(text, label)
sentiment_scores = {
result['labels'][0]: result['scores'][0],
result['labels'][1]: result['scores'][1],
result['labels'][2]: result['scores'][2]
}
return sentiment_scores
def emotion_analysis_for_graph(self,text):
list_of_emotion=text.split(":")
label=list_of_emotion[0]
score=list_of_emotion[1]
score_dict={
label:float(score)
}
print(score_dict)
return score_dict
class Summarizer:
def __init__(self):
pass
def generate_summary(self, text):
model_engine = "text-davinci-003"
prompt = f"""summarize the following conversation delimited by triple backticks.
write within 30 words.
```{text}``` """
completions = openai.Completion.create(
engine=model_engine,
prompt=prompt,
max_tokens=60,
n=1,
stop=None,
temperature=0.5,
)
message = completions.choices[0].text.strip()
return message
history_state = gr.State()
summarizer = Summarizer()
sentiment = SentimentAnalyzer()
class Chat_Bot:
def __init__(self):
pass
def _add_text(self,history, text):
history = history + [(text, None)]
history_state.value = history
return history,gr.update(value="", interactive=False)
def _agent_text(self,history, text):
response = text
history[-1][1] = response
history_state.value = history
return history
def _chat_history(self):
history = history_state.value
formatted_history = " "
for entry in history:
customer_text, agent_text = entry
formatted_history += f"Customer: {customer_text}\n"
if agent_text:
formatted_history += f"Agent: {agent_text}\n"
return formatted_history
def _display_history(self):
formatted_history=self._chat_history()
summary=summarizer.generate_summary(formatted_history)
return summary
def _display_graph(self,sentiment_scores):
labels = sentiment_scores.keys()
scores = sentiment_scores.values()
fig = px.bar(x=scores, y=labels, orientation='h', color=labels, color_discrete_map={"Negative": "red", "Positive": "green", "Neutral": "gray"})
fig.update_traces(texttemplate='%{x:.2f}%', textposition='outside')
fig.update_layout(height=500, width=200)
return fig
def _history_of_chat(self):
history = history_state.value
formatted_history = ""
client=""
agent=""
for entry in history:
customer_text, agent_text = entry
client+=customer_text
formatted_history += f"Customer: {customer_text}\n"
if agent_text:
agent+=agent_text
formatted_history += f"Agent: {agent_text}\n"
return client,agent
def _suggested_answer(self,text):
try:
history = self._chat_history()
start_sequence = "\nCustomer:"
restart_sequence = "\nVodafone Customer Relationship Manager:"
prompt = 'your task is make a conversation between a customer and vodafone telecom customer relationship manager.'
file_path = "vodafone_customer_details.json"
with open(file_path) as file:
customer_details = json.load(file)
prompt += f"{history}{start_sequence}{text}{restart_sequence} if customer ask any information take it from {customer_details} and if customer say thankyou You should end the conversation with greetings."
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt,
temperature=0,
max_tokens=500,
top_p=1,
frequency_penalty=0,
presence_penalty=0.6,
)
message = response.choices[0].text.strip()
if ":" in message:
message = re.sub(r'^.*:', '', message)
return message.strip()
except:
return "I can't get the response"
def _text_box(self,customer_emotion,agent_emotion,agent_sentiment_score,customer_sentiment_score):
agent_score = ", ".join([f"{key}: {value:.2f}" for key, value in agent_sentiment_score.items()])
customer_score = ", ".join([f"{key}: {value:.2f}" for key, value in customer_sentiment_score.items()])
return f"customer_emotion:{customer_emotion}\nagent_emotion:{agent_emotion}\nAgent_Sentiment_score:{agent_score}\nCustomer_sentiment_score:{customer_score}"
def _on_sentiment_btn_click(self):
client,agent=self._history_of_chat()
customer_emotion=sentiment.emotion_analysis(client)
customer_sentiment_score = sentiment.analyze_sentiment_for_graph(client)
agent_emotion=sentiment.emotion_analysis(agent)
agent_sentiment_score = sentiment.analyze_sentiment_for_graph(agent)
scores=self._text_box(customer_emotion,agent_emotion,agent_sentiment_score,customer_sentiment_score)
customer_fig=self._display_graph(customer_sentiment_score)
customer_fig.update_layout(title="Sentiment Analysis",width=800)
agent_fig=self._display_graph(agent_sentiment_score)
agent_fig.update_layout(title="Sentiment Analysis",width=800)
agent_emotion_score = sentiment.emotion_analysis_for_graph(agent_emotion)
agent_emotion_fig=self._display_graph(agent_emotion_score)
agent_emotion_fig.update_layout(title="Emotion Analysis",width=800)
customer_emotion_score = sentiment.emotion_analysis_for_graph(customer_emotion)
customer_emotion_fig=self._display_graph(customer_emotion_score)
customer_emotion_fig.update_layout(title="Emotion Analysis",width=800)
return scores,customer_fig,agent_fig,customer_emotion_fig,agent_emotion_fig
def gradio_interface(self):
with gr.Blocks(css="style.css",theme=gr.themes.Soft()) as demo:
with gr.Row():
gr.HTML("""<img class="leftimage" align="left" src="https://templates.images.credential.net/1612472097627370951721412474196.png" alt="Image" width="210" height="210">
<img align="right" class="rightimage" src="https://download.logo.wine/logo/Vodafone/Vodafone-Logo.wine.png" alt="Image" width="230" height="230" >""")
with gr.Row():
gr.HTML("""<center><h1>Vodafone Generative AI CRM ChatBot</h1></center>""")
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=300)
with gr.Row():
with gr.Column(scale=0.50):
txt = gr.Textbox(
show_label=False,
placeholder="Customer",
).style(container=False)
with gr.Column(scale=0.50):
txt2 = gr.Textbox(
show_label=False,
placeholder="Agent",
).style(container=False)
with gr.Column(scale=0.40):
txt3 =gr.Textbox(
show_label=False,
placeholder="GPT_Suggestion",
).style(container=False)
with gr.Column(scale=0.10, min_width=0):
button=gr.Button(
value="π"
)
with gr.Row():
with gr.Column(scale=0.40):
txt4 =gr.Textbox(
show_label=False,
lines=4,
placeholder="Summary",
).style(container=False)
with gr.Column(scale=0.10, min_width=0):
end_btn=gr.Button(
value="End"
)
with gr.Column(scale=0.40):
txt5 =gr.Textbox(
show_label=False,
lines=4,
placeholder="Sentiment",
).style(container=False)
with gr.Column(scale=0.10, min_width=0):
Sentiment_btn=gr.Button(
value="π",callback=self._on_sentiment_btn_click
)
with gr.Row():
gr.HTML("""<center><h1>Sentiment and Emotion Score Graph</h1></center>""")
with gr.Row():
with gr.Column(scale=0.70, min_width=0):
plot =gr.Plot(label="Customer", size=(500, 600))
with gr.Row():
with gr.Column(scale=0.70, min_width=0):
plot_2 =gr.Plot(label="Agent", size=(500, 600))
with gr.Row():
with gr.Column(scale=0.70, min_width=0):
plot_3 =gr.Plot(label="Customer_Emotion", size=(500, 600))
with gr.Row():
with gr.Column(scale=0.70, min_width=0):
plot_4 =gr.Plot(label="Agent_Emotion", size=(500, 600))
txt_msg = txt.submit(self._add_text, [chatbot, txt], [chatbot, txt])
txt_msg.then(lambda: gr.update(interactive=True), None, [txt])
txt.submit(self._suggested_answer,txt,txt3)
button.click(self._agent_text, [chatbot,txt3], chatbot)
txt2.submit(self._agent_text, [chatbot, txt2], chatbot).then(
self._agent_text, [chatbot, txt2], chatbot
)
end_btn.click(self._display_history, [], txt4)
Sentiment_btn.click(self._on_sentiment_btn_click,[],[txt5,plot,plot_2,plot_3,plot_4])
demo.title = "Vodafone Generative AI CRM ChatBot"
demo.launch()
bot = Chat_Bot()
bot.gradio_interface()
|