File size: 12,501 Bytes
0782294 ce0a839 bfe2f06 e4de6a7 0782294 9a3955f 0782294 9a3955f 0782294 9a3955f 0782294 fc6a57c 0782294 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import logging
from typing import List
from pydantic import NoneStr
import os
from langchain.chains.question_answering import load_qa_chain
from langchain.document_loaders import UnstructuredFileLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
import gradio as gr
import openai
from langchain import PromptTemplate, OpenAI, LLMChain
import validators
import requests
import mimetypes
import tempfile
import pandas as pd
import re
class ChemicalIdentifier:
def __init__(self):
openai.api_key = os.getenv("OPENAI_API_KEY")
self.logger = logging.getLogger("ChemicalIdentifier")
self.logger.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.DEBUG)
console_handler.setFormatter(formatter)
self.logger.addHandler(console_handler)
def upload_via_url(self,url:str)->List:
"""
Uploads a file from a given URL and returns the loaded document.
Args:
url (str): The URL of the file to be uploaded.
Returns:
Document: The loaded document.
Raises:
ValueError: If the URL is not valid or the file cannot be fetched.
"""
try:
if validators.url(url):
headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36',}
r = requests.get(url,headers=headers)
if r.status_code != 200:
raise ValueError(
"Check the url of your file; returned status code %s" % r.status_code
)
content_type = r.headers.get("content-type")
file_extension = mimetypes.guess_extension(content_type)
temp_file = tempfile.NamedTemporaryFile(suffix=file_extension, delete=False)
temp_file.write(r.content)
file_path = temp_file.name
loader = UnstructuredFileLoader(file_path, strategy="fast")
docs = loader.load()
return docs
else:
raise ValueError("Please enter a valid URL")
except Exception as e:
self.logger.error("Error occurred while uploading the file: %s", str(e))
raise ValueError("Error occurred while uploading the file") from e
def find_chemicals(self,text:str)->str:
"""
Extracts chemical names from the given text.
Args:
text (str): The text to extract chemical names from.
Returns:
str: The extracted chemical names in bullet form.
Raises:
ValueError: If an error occurs during the extraction process.
"""
try:
prompt = f"List out only all the Chemicals Names in the give text in bullet form.{text}"
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt,
temperature=0,
max_tokens=500,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
)
message = response.choices[0].text.strip()
if ":" in message:
message = re.sub(r'^.*:', '', message)
return message.strip()
except Exception as e:
self.logger.error("Error occurred while finding chemicals: %s", str(e))
raise ValueError("Error occurred while finding chemicals") from e
def get_chemicals(self,urls:str)->str:
"""
Retrieves chemicals from the provided URLs.
Args:
urls (str): Comma-separated URLs of the files to be processed.
Returns:
str: The extracted chemical names.
Raises:
ValueError: If an error occurs during the process.
"""
try:
total_chemical=[]
for url in urls.split(','):
webpage_text = self.upload_via_url(url)
chemicals = self.find_chemicals(webpage_text)
total_chemical.append(chemicals)
list_of_chemicals = "".join(total_chemical)
return list_of_chemicals
except Exception as e:
self.logger.error("Error occurred while getting chemicals from URLs: %s", str(e))
raise ValueError("Error occurred while getting chemicals from URLs") from e
def get_empty_state(self):
""" Create empty Knowledge base"""
return {"knowledge_base": None}
def create_knowledge_base(self,docs):
"""Create a knowledge base from the given documents.
Args:
docs (List[str]): List of documents.
Returns:
FAISS: Knowledge base built from the documents.
"""
# Initialize a CharacterTextSplitter to split the documents into chunks
# Each chunk has a maximum length of 500 characters
# There is no overlap between the chunks
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len
)
# Split the documents into chunks using the text_splitter
chunks = text_splitter.split_documents(docs)
# Initialize an OpenAIEmbeddings model to compute embeddings of the chunks
embeddings = OpenAIEmbeddings()
# Build a knowledge base using FAISS from the chunks and their embeddings
knowledge_base = FAISS.from_documents(chunks, embeddings)
# Return the resulting knowledge base
return knowledge_base
def upload_file(self,file_paths):
"""Upload a file and create a knowledge base from its contents.
Args:
file_paths : The files to uploaded.
Returns:
tuple: A tuple containing the file name and the knowledge base.
"""
file_paths = [single_file_path.name for single_file_path in file_paths]
loaders = [UnstructuredFileLoader(file_obj, strategy="fast") for file_obj in file_paths]
# Load the contents of the file using the loader
docs = []
for loader in loaders:
docs.extend(loader.load())
# Create a knowledge base from the loaded documents using the create_knowledge_base() method
knowledge_base = self.create_knowledge_base(docs)
# Return a tuple containing the file name and the knowledge base
return file_paths, {"knowledge_base": knowledge_base}
def answer_question(self,urls, state):
"""Answer a question based on the current knowledge base.
Args:
state (dict): The current state containing the knowledge base.
Returns:
str: The answer to the question.
"""
result = self.get_chemicals(urls)
# Retrieve the knowledge base from the state dictionary
knowledge_base = state["knowledge_base"]
# Set the question for which we want to find the answer
question = "Identify the Chemical Capabilities Only"
# Perform a similarity search on the knowledge base to retrieve relevant documents
docs = knowledge_base.similarity_search(question)
# Initialize an OpenAI language model for question answering
template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
Identify the Chemical Capabilities Only.
{context}
Question :{question}.
The result should be in bullet points format.
"""
prompt = PromptTemplate(template=template,input_variables=["context","question"])
llm = OpenAI(temperature=0.4)
llm_chain = LLMChain(prompt=prompt, llm=llm)
# Load a question-answering chain using the language model
chain = load_qa_chain(llm, chain_type="stuff",prompt=prompt)
# Run the question-answering chain on the input documents and question
response = chain.run(input_documents=docs, question=question)
Answer = response+"\n"+result
# Return the response as the answer to the question
return Answer
def extract_excel_data(self,file_path):
# Read the Excel file
df = pd.read_excel(file_path)
# Flatten the data to a single list
data_list = []
for _, row in df.iterrows():
data_list.extend(row.tolist())
return data_list
def comparing_chemicals(self,excel_file_path,chemicals):
chemistry_capability = self.extract_excel_data(excel_file_path.name)
response = openai.Completion.create(
engine="text-davinci-003",
prompt= f"""Analyse the following text delimited by triple backticks to return the comman chemicals.
text : ```{chemicals} {chemistry_capability}```.
result should be in bullet points format.
""",
max_tokens=100,
n=1,
stop=None,
temperature=0,
top_p=1.0,
frequency_penalty=0.0,
presence_penalty=0.0
)
result = response.choices[0].text.strip()
return result
def gradio_interface(self)->None:
"""
Starts the Gradio interface for chemical identification.
"""
try:
with gr.Blocks(css="style.css",theme='karthikeyan-adople/hudsonhayes-dark1') as demo:
#gr.HTML("""<center><img src="https://hudsonandhayes.co.uk/wp-content/uploads/2023/03/Hudson_meta.jpg" height="210px" width="310"></center>""")
gr.HTML("""<center> <img height="160" src="file=logo.png" alt="logo"/></center>""")
state = gr.State(self.get_empty_state())
gr.HTML("""<center><h1 style="color:#fff">Chemical Identifier for Syngenta</h1></center>""")
# btn = gr.Button(value="Submit")
# chemicals_textbox = gr.Textbox(label="Chemicals",lines=6)
with gr.Column(elem_id="col-container"):
with gr.Row(elem_id="row-flex"):
url = gr.Textbox(label="URL")
with gr.Row(elem_id="row-flex"):
with gr.Column(scale=0.90, min_width=160):
file_output = gr.File(elem_classes="heightfit")
with gr.Column(scale=0.10, min_width=160):
upload_button = gr.UploadButton(
"Browse File", file_types=[".txt", ".pdf", ".doc", ".docx"],
elem_classes="heightfit",variant="primary",
file_count = "multiple")
with gr.Row():
with gr.Column(scale=1, min_width=0):
excel_input = gr.File(elem_classes="heightfit1",label = "excel file",file_types = [".xlsx"])
with gr.Row():
with gr.Column(scale=1, min_width=0):
analyse_btn = gr.Button(value="Analyse",variant="primary")
with gr.Row():
with gr.Column(scale=1, min_width=0):
answer = gr.Textbox(value="",label='Chemicals :',show_label=True, placeholder="",lines=5)
with gr.Row():
with gr.Column(scale=1, min_width=0):
compare_btn = gr.Button(value="valid",variant="primary")
with gr.Row():
with gr.Column(scale=1, min_width=0):
compared_result = gr.Textbox(value="",label='valid chemicals :',show_label=True, placeholder="",lines=5)
upload_button.upload(self.upload_file, upload_button, [file_output,state])
analyse_btn.click(self.answer_question, [url,state], [answer])
compare_btn.click(self.comparing_chemicals,[excel_input,answer],compared_result)
# btn.click(fn=self.get_chemicals, inputs=url, outputs=chemicals_textbox)
demo.launch()
except Exception as e:
self.logger.error("Error occurred while launching Gradio interface: %s", str(e))
raise ValueError("Error occurred while launching Gradio interface") from e
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
chemical_identifier = ChemicalIdentifier()
chemical_identifier.gradio_interface()
|