Spaces:
Sleeping
Sleeping
File size: 13,398 Bytes
ca3e099 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import pandas as pd
import numpy as np
from sklearn.base import BaseEstimator, TransformerMixin
from scipy.fftpack import fft
from scipy.signal import welch
import pywt
#from _config import config
class ExtractFeatures(BaseEstimator, TransformerMixin):
def __init__(self, window_length, window_step_size, data_frequency, selected_domains=None, include_magnitude=False, features_label_columns=None):
self.window_length = window_length
self.window_step_size = window_step_size
self.data_frequency = data_frequency
self.selected_domains = selected_domains
self.include_magnitude = include_magnitude
self.features_label_columns = features_label_columns #if label_columns else ["arousal", "valence"] # Default to arousal and valence if not specified
def fit(self, X, y=None):
return self
def transform(self, X):
features_list = []
if 'groupid' in X.columns: # Check for groupid column
for groupid in X['groupid'].unique(): # Iterate over unique group IDs
temp = X[X['groupid'] == groupid] # Filter rows by group ID
temp_ex = temp[['accel_time', 'x', 'y', 'z']].copy() # Keep only the necessary columns (accel_time can be removed if unused)
windows = self._window_data(temp_ex[['x', 'y', 'z']]) # Create windows of data
for window in windows:
features = self._extract_features_from_window(window) # Extract features from each window
features['groupid'] = groupid # Add groupid to the features
# Dynamically add emotion labels to the features
for label in self.features_label_columns:
features[label] = temp[label].iloc[0]
features_list.append(pd.DataFrame([features])) # Convert dictionary to DataFrame
else: # In case there's no groupid, calculate features without it
windows = self._window_data(X[['x', 'y', 'z']])
for window in windows:
features = self._extract_features_from_window(window)
features_list.append(pd.DataFrame([features]))
all_features = pd.concat(features_list, ignore_index=True)
# Export features to CSV
window_length_str = str(self.window_length)
window_step_size_str = str(self.window_step_size)
if self.selected_domains is None: # All features calculated if domains are not selected
domain_str = "all_features"
else:
domain_str = "_".join(self.selected_domains)
file_name = f"features_window_{window_length_str}_step_{window_step_size_str}_{domain_str}.csv"
all_features.to_csv(file_name, index=False)
print("All features extracted successfully.")
return all_features
# Time Domain Features
def _calculate_magnitude(self, window):
return np.sqrt(window[:, 0]**2 + window[:, 1]**2 + window[:, 2]**2)
def _window_data(self, data): # Function to create windows of the data
window_samples = int(self.window_length * self.data_frequency) # Number of samples in each window 60sec * 25Hz = 1500 samples
step_samples = int(self.window_step_size * self.data_frequency) # Number of samples to move the window
windows = [data[i:i + window_samples] for i in range(0, len(data) - window_samples + 1, step_samples)] # Create windows
return np.array(windows)
def _extract_features_from_window(self, window): #DONE Mehrere domains gleichzeitig berechnen
all_features = {}
if self.selected_domains is None or 'time_domain' in self.selected_domains:
all_features.update(self._extract_time_domain_features(window))
if self.selected_domains is None or 'spatial' in self.selected_domains:
all_features.update(self._extract_spatial_features(window))
if self.selected_domains is None or 'frequency' in self.selected_domains:
all_features.update(self._extract_frequency_domain_features(window))
if self.selected_domains is None or 'statistical' in self.selected_domains:
all_features.update(self._extract_statistical_features(window))
if self.selected_domains is None or 'wavelet' in self.selected_domains:
all_features.update(self._extract_wavelet_features(window))
return all_features
def _extract_time_domain_features(self, window):
features = {
'mean_x': np.mean(window[:, 0]),
'mean_y': np.mean(window[:, 1]),
'mean_z': np.mean(window[:, 2]),
'std_x': np.std(window[:, 0]),
'std_y': np.std(window[:, 1]),
'std_z': np.std(window[:, 2]),
'variance_x': np.var(window[:, 0]),
'variance_y': np.var(window[:, 1]),
'variance_z': np.var(window[:, 2]),
'rms_x': np.sqrt(np.mean(window[:, 0]**2)),
'rms_y': np.sqrt(np.mean(window[:, 1]**2)),
'rms_z': np.sqrt(np.mean(window[:, 2]**2)),
'max_x': np.max(window[:, 0]),
'max_y': np.max(window[:, 1]),
'max_z': np.max(window[:, 2]),
'min_x': np.min(window[:, 0]),
'min_y': np.min(window[:, 1]),
'min_z': np.min(window[:, 2]),
'peak_to_peak_x': np.ptp(window[:, 0]),
'peak_to_peak_y': np.ptp(window[:, 1]),
'peak_to_peak_z': np.ptp(window[:, 2]),
'skewness_x': pd.Series(window[:, 0]).skew(),
'skewness_y': pd.Series(window[:, 1]).skew(),
'skewness_z': pd.Series(window[:, 2]).skew(),
'kurtosis_x': pd.Series(window[:, 0]).kurt(),
'kurtosis_y': pd.Series(window[:, 1]).kurt(),
'kurtosis_z': pd.Series(window[:, 2]).kurt(),
'zero_crossing_rate_x': np.sum(np.diff(np.sign(window[:, 0])) != 0),
'zero_crossing_rate_y': np.sum(np.diff(np.sign(window[:, 1])) != 0),
'zero_crossing_rate_z': np.sum(np.diff(np.sign(window[:, 2])) != 0),
'sma' : np.sum(np.abs(window[:, 0])) + np.sum(np.abs(window[:, 1])) + np.sum(np.abs(window[:, 2])), #Signal Magnitude Area
}
# print(f"Time domain features extracted successfully.")
# Additional features for Magnitude (xyz in one vector)
if self.include_magnitude:
magnitude = self._calculate_magnitude(window)
features['mean_magnitude'] = np.mean(magnitude)
features['std_magnitude'] = np.std(magnitude)
features['variance_magnitude'] = np.var(magnitude)
features['rms_magnitude'] = np.sqrt(np.mean(magnitude**2))
features['max_magnitude'] = np.max(magnitude)
features['min_magnitude'] = np.min(magnitude)
features['peak_to_peak_magnitude'] = np.ptp(magnitude)
features['skewness_magnitude'] = pd.Series(magnitude).skew()
features['kurtosis_magnitude'] = pd.Series(magnitude).kurt()
features['zero_crossing_rate_magnitude'] = np.sum(np.diff(np.sign(magnitude)) != 0)
# print(f"Additional time domain features for magnitude extracted successfully.")
return features
# Spatial Features
def _extract_spatial_features(self, window):
features = {}
# Euclidean Norm (Magnitude)
magnitude = self._calculate_magnitude(window)
features['euclidean_norm'] = np.mean(magnitude) # or np.linalg.norm for each window
# Tilt Angles (Pitch and Roll)
pitch = np.arctan2(window[:, 1], np.sqrt(window[:, 0]**2 + window[:, 2]**2)) * (180 / np.pi)
roll = np.arctan2(window[:, 0], np.sqrt(window[:, 1]**2 + window[:, 2]**2)) * (180 / np.pi)
features['mean_pitch'] = np.mean(pitch)
features['mean_roll'] = np.mean(roll)
# Correlation between Axes
features['correlation_xy'] = np.corrcoef(window[:, 0], window[:, 1])[0, 1]
features['correlation_xz'] = np.corrcoef(window[:, 0], window[:, 2])[0, 1]
features['correlation_yz'] = np.corrcoef(window[:, 1], window[:, 2])[0, 1]
# print(f"Spatial features extracted successfully.")
return features
# Frequency Domain Features
def _extract_frequency_domain_features(self, window):
n = len(window)
freq_values = np.fft.fftfreq(n, d=1/self.data_frequency)[:n // 2]
fft_values = fft(window, axis=0)
fft_magnitude = np.abs(fft_values)[:n // 2]
features = {}
# Spectral Entropy
def spectral_entropy(signal):
psd = np.square(signal)
psd_norm = psd / np.sum(psd)
return -np.sum(psd_norm * np.log(psd_norm + 1e-10))
for i, axis in enumerate(['x', 'y', 'z']):
# Dominant Frequency
dominant_frequency = freq_values[np.argmax(fft_magnitude[:, i])]
features[f'dominant_frequency_{axis}'] = dominant_frequency
# Spectral Entropy
entropy = spectral_entropy(fft_magnitude[:, i])
features[f'spectral_entropy_{axis}'] = entropy
# Power Spectral Density (PSD) and Energy
f, psd_values = welch(window[:, i], fs=self.data_frequency, nperseg=n)
features[f'psd_mean_{axis}'] = np.mean(psd_values)
features[f'energy_{axis}'] = np.sum(psd_values**2)
# Bandwidth (frequency range containing significant portion of the energy)
cumulative_energy = np.cumsum(psd_values)
total_energy = cumulative_energy[-1]
low_cutoff_idx = np.argmax(cumulative_energy > 0.1 * total_energy)
high_cutoff_idx = np.argmax(cumulative_energy > 0.9 * total_energy)
bandwidth = f[high_cutoff_idx] - f[low_cutoff_idx]
features[f'bandwidth_{axis}'] = bandwidth
# Spectral Centroid (Center of mass of the spectrum)
spectral_centroid = np.sum(f * psd_values) / np.sum(psd_values)
features[f'spectral_centroid_{axis}'] = spectral_centroid
if self.include_magnitude:
# Magnitude-based Frequency Domain Features
magnitude = self._calculate_magnitude(window)
fft_magnitude_mag = np.abs(fft(magnitude))[:n // 2]
# Dominant Frequency for Magnitude
features['dominant_frequency_magnitude'] = freq_values[np.argmax(fft_magnitude_mag)]
# Spectral Entropy for Magnitude
features['spectral_entropy_magnitude'] = spectral_entropy(fft_magnitude_mag)
# Power Spectral Density and Energy for Magnitude
f, psd_values_mag = welch(magnitude, fs=self.data_frequency, nperseg=n)
features['psd_mean_magnitude'] = np.mean(psd_values_mag)
features['energy_magnitude'] = np.sum(psd_values_mag**2)
# Bandwidth for Magnitude
cumulative_energy_mag = np.cumsum(psd_values_mag)
total_energy_mag = cumulative_energy_mag[-1]
low_cutoff_idx_mag = np.argmax(cumulative_energy_mag > 0.1 * total_energy_mag)
high_cutoff_idx_mag = np.argmax(cumulative_energy_mag > 0.9 * total_energy_mag)
bandwidth_mag = f[high_cutoff_idx_mag] - f[low_cutoff_idx_mag]
features['bandwidth_magnitude'] = bandwidth_mag
# Spectral Centroid for Magnitude
features['spectral_centroid_magnitude'] = np.sum(f * psd_values_mag) / np.sum(psd_values_mag)
# print(f"Frequency domain features extracted successfully.")
return features
def _extract_statistical_features(self, window):
features = {
'25th_percentile_x': np.percentile(window[:, 0], 25),
'25th_percentile_y': np.percentile(window[:, 1], 25),
'25th_percentile_z': np.percentile(window[:, 2], 25),
'75th_percentile_x': np.percentile(window[:, 0], 75),
'75th_percentile_y': np.percentile(window[:, 1], 75),
'75th_percentile_z': np.percentile(window[:, 2], 75),
}
if self.include_magnitude:
magnitude = self._calculate_magnitude(window)
features['25th_percentile_magnitude'] = np.percentile(magnitude, 25)
features['75th_percentile_magnitude'] = np.percentile(magnitude, 75)
# print(f"Statistical features extracted successfully.")
return features
def _extract_wavelet_features(self, window, wavelet='db1'):
coeffs = pywt.wavedec(window, wavelet, axis=0, level=3)
features = {
'wavelet_energy_approx_x': np.sum(coeffs[0][:, 0]**2),
'wavelet_energy_approx_y': np.sum(coeffs[0][:, 1]**2),
'wavelet_energy_approx_z': np.sum(coeffs[0][:, 2]**2),
}
if self.include_magnitude:
magnitude = self._calculate_magnitude(window)
coeffs_magnitude = pywt.wavedec(magnitude, wavelet, level=3)
features['wavelet_energy_approx_magnitude'] = np.sum(coeffs_magnitude[0]**2)
# print(f"Wavelet features extracted successfully.")
return features |