File size: 5,766 Bytes
db7246b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import streamlit as st

# Configure Streamlit page
st.set_page_config(
    page_title="Find the Song that You Like🎸", page_icon="🎸", layout="wide"
)

import pandas as pd
import plotly.express as px
import streamlit.components.v1 as components
from sklearn.neighbors import NearestNeighbors


@st.cache(allow_output_mutation=True)
def data_import():
    """Function for loading in cleaned data csv file."""
    df = pd.read_csv("data/clean_data.csv")
    df["genres"] = df.genres.apply(
        lambda x: [i[1:-1] for i in str(x)[1:-1].split(", ")]
    )
    df_explode = df.explode("genres")
    return df_explode


genre_names = [
    "Dance Pop",
    "Electronic",
    "Electropop",
    "Hip Hop",
    "Jazz",
    "K-pop",
    "Latin",
    "Pop",
    "Pop Rap",
    "R&B",
    "Rock",
]
audio_params = [
    "acousticness",
    "danceability",
    "energy",
    "instrumentalness",
    "valence",
    "tempo",
]

df_explode = data_import()


def match_song(genre, yr_start, yr_end, test_feat):
    """Function for finding similar songs with KNN algorithm."""
    genre = genre.lower()
    genre_data = df_explode[
        (df_explode["genres"] == genre)
        & (df_explode["release_year"] >= yr_start)
        & (df_explode["release_year"] <= yr_end)
    ]
    genre_data = genre_data.sort_values(by="popularity", ascending=False)[:500]

    # Load KNN from SkLearn
    neigh = NearestNeighbors()
    neigh.fit(genre_data[audio_params].to_numpy())

    n_neighbors = neigh.kneighbors(
        [test_feat], n_neighbors=len(genre_data), return_distance=False
    )[0]

    uris = genre_data.iloc[n_neighbors]["uri"].tolist()
    audios = genre_data.iloc[n_neighbors][audio_params].to_numpy()

    return uris, audios


# Setup page order
def page():
    title = "Find Your Song🎸"
    st.title(title)

    st.write(
        "Get recommended songs on Spotify based on genre and key audio parameters."
    )
    st.markdown("##")

    # Streamlit column layout
    with st.container():
        col1, col2, col3, col4 = st.columns((2, 0.5, 0.5, 0.5))

        with col3:
            st.markdown("***Select genre:***")
            genre = st.radio("", genre_names, index=genre_names.index("Rock"))

        with col1:
            st.markdown("***Select audio parameters to customize:***")
            yr_start, yr_end = st.slider(
                "Select the year range", 1908, 2022, (1980, 2022)
            )
            acousticness = st.slider("Acousticness", 0.0, 1.0, 0.5)
            danceability = st.slider("Danceability", 0.0, 1.0, 0.5)
            energy = st.slider("Energy", 0.0, 1.0, 0.5)
            instrumentalness = st.slider("Instrumentalness", 0.0, 1.0, 0.5)
            valence = st.slider("Valence", 0.0, 1.0, 0.45)
            tempo = st.slider("Tempo", 0.0, 244.0, 125.01)

    pr_page_tracks = 6
    test_feat = [acousticness, danceability, energy, instrumentalness, valence, tempo]
    uris, audios = match_song(genre, yr_start, yr_end, test_feat)

    tracks = []
    for uri in uris:
        track = """<iframe src="https://open.spotify.com/embed/track/{}" width="280" height="400" frameborder="0" allowtransparency="true" allow="encrypted-media"></iframe>""".format(
            uri
        )
        tracks.append(track)

    if "previous_inputs" not in st.session_state:
        st.session_state["previous_inputs"] = [genre, yr_start, yr_end] + test_feat

    current_inputs = [genre, yr_start, yr_end] + test_feat
    if current_inputs != st.session_state["previous_inputs"]:
        if "start_track_i" in st.session_state:
            st.session_state["start_track_i"] = 0

        st.session_state["previous_inputs"] = current_inputs

    if "start_track_i" not in st.session_state:
        st.session_state["start_track_i"] = 0

    with st.container():
        col1, col2, col3 = st.columns([2, 1, 2])
        if st.button("More Songs"):
            if st.session_state["start_track_i"] < len(tracks):
                st.session_state["start_track_i"] += pr_page_tracks

        current_tracks = tracks[
            st.session_state["start_track_i"] : st.session_state["start_track_i"]
            + pr_page_tracks
        ]
        current_audios = audios[
            st.session_state["start_track_i"] : st.session_state["start_track_i"]
            + pr_page_tracks
        ]
        if st.session_state["start_track_i"] < len(tracks):
            for i, (track, audio) in enumerate(zip(current_tracks, current_audios)):
                if i % 2 == 0:
                    with col1:
                        components.html(
                            track,
                            height=400,
                        )
                        with st.expander("Display Chart"):
                            df = pd.DataFrame(dict(r=audio[:5], theta=audio_params[:5]))
                            fig = px.line_polar(
                                df, r="r", theta="theta", line_close=True
                            )
                            fig.update_layout(height=400, width=340)
                            st.plotly_chart(fig)

                else:
                    with col3:
                        components.html(
                            track,
                            height=400,
                        )
                        with st.expander("Display Chart"):
                            df = pd.DataFrame(dict(r=audio[:5], theta=audio_params[:5]))
                            fig = px.line_polar(
                                df, r="r", theta="theta", line_close=True
                            )
                            fig.update_layout(height=400, width=340)
                            st.plotly_chart(fig)
        else:
            st.write("No more songs")


page()