File size: 1,615 Bytes
d58d621 fe8c632 b870ebb fe8c632 b870ebb fe8c632 b870ebb fe8c632 07dae79 fe8c632 398e72a 07dae79 fe8c632 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import streamlit as st
from streamlit import session_state as session
from PIL import Image
class TeethApp:
def __init__(self):
# Font
with open("utils/style.css") as css:
st.markdown(f"<style>{css.read()}</style>", unsafe_allow_html=True)
# Logo
self.image_path = "utils/teeth-295404_1280.png"
self.image = Image.open(self.image_path)
width, height = self.image.size
scale = 12
new_width, new_height = width / scale, height / scale
self.image = self.image.resize((int(new_width), int(new_height)))
# Streamlit side navigation bar
st.sidebar.markdown("# AI ToothSeg")
st.sidebar.markdown("Automatic teeth segmentation with Deep Learning")
st.sidebar.markdown(" ")
st.sidebar.image(self.image, use_column_width=False)
st.markdown(
"""
<style>
.css-1bxukto {
background-color: rgb(255, 255, 255) ;""",
unsafe_allow_html=True,
)
# Configure Streamlit page
st.set_page_config(page_title="Teeth Segmentation", page_icon="ⓘ")
class Intro(TeethApp):
def __init__(self):
TeethApp.__init__(self)
self.build_app()
def build_app(self):
st.title("AI-assited Tooth Segmentation")
st.markdown("This app automatically segments intra-oral scans of teeth using machine learning.")
st.markdown("Head to the 'Segment' tab to try it out!")
st.markdown("**Example:**")
st.image("illustration.png")
if __name__ == "__main__":
app = Intro() |