File size: 2,111 Bytes
b870ebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c98e94
b870ebb
 
 
 
 
 
 
 
 
9a64105
84cea81
 
 
3c98e94
66d73bc
b870ebb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import streamlit as st
from streamlit import session_state as session

from PIL import Image

class TeethApp:
    def __init__(self):
        # Font
        with open("utils/style.css") as css:
            st.markdown(f"<style>{css.read()}</style>", unsafe_allow_html=True)
    
        # Logo
        self.image_path = "utils/teeth-295404_1280.png"
        self.image = Image.open(self.image_path)
        width, height = self.image.size
        scale = 12
        new_width, new_height = width / scale, height / scale
        self.image = self.image.resize((int(new_width), int(new_height)))

        # Streamlit side navigation bar
        st.sidebar.markdown("# AI ToothSeg")
        st.sidebar.markdown("Automatic teeth segmentation with Deep Learning")
        st.sidebar.markdown(" ")
        st.sidebar.image(self.image, use_column_width=False)
        st.markdown(
            """
                <style>
                .css-1bxukto {
                background-color: rgb(255, 255, 255) ;""",
            unsafe_allow_html=True,
        )
        
# Configure Streamlit page
st.set_page_config(page_title="Teeth Segmentation", page_icon="ⓘ")

class Guide(TeethApp):
    def __init__(self):
        TeethApp.__init__(self)
        self.build_app()

    def build_app(self):
        st.title("More Coming Soon")
        st.markdown("Made by [Huayuan Song](https://www.linkedin.com/in/huayuansong/) for the 10 ECTS [02830 Advanced Project in Digital Media Technology](https://kurser.dtu.dk/course/02830) project course at the [Technical University of Denmark (DTU)](https://dtu.dk/english).")
        st.markdown("ML backend is based on MeshSegNet architecture by [Lian et al.](https://ieeexplore.ieee.org/abstract/document/8984309)")
        st.markdown("The model has been trained on intra-oral scans of both upper and lower jaws annotated, validated by professionals in the 3DTeethSeg'22 Challenge by [Ben-Hamadou et al.](https://arxiv.org/abs/2305.18277)")
        st.markdown("**Thanks for trying the app out!**")
        st.image("illustration.png")

if __name__ == "__main__":
    app = Guide()