File size: 4,434 Bytes
93b0d61 799c1d9 210813d 1d17134 93b0d61 6904e5b 9fa0ffc e1e9b2f 9fa0ffc 6ac807a 93b0d61 d9ce3a8 030a8f4 b320555 93b0d61 ea7c1d6 93b0d61 4265f46 93b0d61 c082d19 f5ea5bf 6ac807a 93b0d61 07a5035 93b0d61 a42a1e2 93b0d61 f5ea5bf b320555 93b0d61 0b9e28c 93b0d61 799c1d9 93b0d61 2ff16a6 93b0d61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel, OVStableDiffusionPipeline
import torch
from huggingface_hub import snapshot_download
import openvino.runtime as ov
from typing import Optional, Dict
#from diffusers import EulerAncestralDiscreteScheduler, LCMScheduler
#LCMScheduler 產生垃圾
#EulerDiscreteScheduler 尚可
#EulerAncestralDiscreteScheduler 很不錯chatgpt推薦
model_id = "hsuwill000/LCM-anything-v5-openvino"
#model_id = "spamsoms/LCM-anything-v5-openvino2"
#adapter_id = "latent-consistency/lcm-lora-sdv1-5"
#512*512 好 太大會變形
HIGH=1024
WIDTH=512
batch_size = -1
pipe = OVStableDiffusionPipeline.from_pretrained(
model_id,
compile = False,
ov_config = {"CACHE_DIR":""},
torch_dtype=torch.int8, #快
#torch_dtype=torch.bfloat16, #中
#variant="fp16",
#torch_dtype=torch.IntTensor, #慢,
safety_checker=None,
use_safetensors=False,
)
print(pipe.scheduler.compatibles)
#pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
#pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
#pipe.load_lora_weights(adapter_id)
#pipe.fuse_lora()
pipe.reshape( batch_size=-1, height=HIGH, width=WIDTH, num_images_per_prompt=1)
#pipe.load_textual_inversion("./badhandv4.pt", "badhandv4")
#pipe.load_textual_inversion("./Konpeto.pt", "Konpeto")
#<shigure-ui-style>
#pipe.load_textual_inversion("sd-concepts-library/shigure-ui-style")
#pipe.load_textual_inversion("sd-concepts-library/ruan-jia")
#pipe.load_textual_inversion("sd-concepts-library/agm-style-nao")
pipe.compile()
prompt=""
negative_prompt="EasyNegative, (animal, pet), close up,"
def infer(prompt,negative_prompt):
image = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
width = WIDTH,
height = HIGH,
guidance_scale=1.0,
num_inference_steps=6,
num_images_per_prompt=1,
).images[0]
return image
examples = [
"(Digital art, highres, best quality, 8K, masterpiece, anime screencap, perfect eyes:1.4, ultra detailed:1.5),1girl,flat chest,short messy pink hair,blue eyes,tall,thick thighs,light blue hoodie,collar,light blue shirt,black sport shorts,bulge,black thigh highs,femboy,okoto no ko,smiling,blushing,looking at viewer,inside,livingroom,sitting on couch,nighttime,dark,hand_to_mouth,",
"1girl, silver hair, symbol-shaped pupils, yellow eyes, smiling, light particles, light rays, wallpaper, star guardian, serious face, red inner hair, power aura, grandmaster1, golden and white clothes",
"masterpiece, best quality, highres booru, 1girl, solo, depth of field, rim lighting, flowers, petals, from above, crystals, butterfly, vegetation, aura, magic, hatsune miku, blush, slight smile, close-up, against wall,",
"((colofrul:1.7)),((best quality)), ((masterpiece)), ((ultra-detailed)), (illustration), (detailed light), (an extremely delicate and beautiful),incredibly_absurdres,(glowing),(1girl:1.7),solo,a beautiful girl,(((cowboy shot))),standding,((Hosiery)),((beautiful off-shoulder lace-trimmed layered strapless dress+white stocking):1.25),((Belts)),(leg loops),((Hosiery)),((flower headdress)),((long white hair)),(((beautiful eyes))),BREAK,((english text)),(flower:1.35),(garden),(((border:1.75))),",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# lcmanything-v5-openvino {WIDTH}x{HIGH}
Currently running on {power_device}.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result]
)
run_button.click(
fn = infer,
inputs = [prompt],
outputs = [result]
)
demo.queue().launch() |