File size: 10,634 Bytes
186701e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
# Copyright (c) OpenMMLab. All rights reserved.
"""Perform MMYOLO inference on large images (as satellite imagery) as:
```shell
wget -P checkpoint https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth # noqa: E501, E261.
python demo/large_image_demo.py \
demo/large_image.jpg \
configs/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py \
checkpoint/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth
```
"""
import os
import random
from argparse import ArgumentParser
from pathlib import Path
import mmcv
import numpy as np
from mmdet.apis import inference_detector, init_detector
from mmengine.config import Config, ConfigDict
from mmengine.logging import print_log
from mmengine.utils import ProgressBar
try:
from sahi.slicing import slice_image
except ImportError:
raise ImportError('Please run "pip install -U sahi" '
'to install sahi first for large image inference.')
from mmyolo.registry import VISUALIZERS
from mmyolo.utils import switch_to_deploy
from mmyolo.utils.large_image import merge_results_by_nms, shift_predictions
from mmyolo.utils.misc import get_file_list
def parse_args():
parser = ArgumentParser(
description='Perform MMYOLO inference on large images.')
parser.add_argument(
'img', help='Image path, include image file, dir and URL.')
parser.add_argument('config', help='Config file')
parser.add_argument('checkpoint', help='Checkpoint file')
parser.add_argument(
'--out-dir', default='./output', help='Path to output file')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--show', action='store_true', help='Show the detection results')
parser.add_argument(
'--deploy',
action='store_true',
help='Switch model to deployment mode')
parser.add_argument(
'--tta',
action='store_true',
help='Whether to use test time augmentation')
parser.add_argument(
'--score-thr', type=float, default=0.3, help='Bbox score threshold')
parser.add_argument(
'--patch-size', type=int, default=640, help='The size of patches')
parser.add_argument(
'--patch-overlap-ratio',
type=float,
default=0.25,
help='Ratio of overlap between two patches')
parser.add_argument(
'--merge-iou-thr',
type=float,
default=0.25,
help='IoU threshould for merging results')
parser.add_argument(
'--merge-nms-type',
type=str,
default='nms',
help='NMS type for merging results')
parser.add_argument(
'--batch-size',
type=int,
default=1,
help='Batch size, must greater than or equal to 1')
parser.add_argument(
'--debug',
action='store_true',
help='Export debug results before merging')
parser.add_argument(
'--save-patch',
action='store_true',
help='Save the results of each patch. '
'The `--debug` must be enabled.')
args = parser.parse_args()
return args
def main():
args = parse_args()
config = args.config
if isinstance(config, (str, Path)):
config = Config.fromfile(config)
elif not isinstance(config, Config):
raise TypeError('config must be a filename or Config object, '
f'but got {type(config)}')
if 'init_cfg' in config.model.backbone:
config.model.backbone.init_cfg = None
if args.tta:
assert 'tta_model' in config, 'Cannot find ``tta_model`` in config.' \
" Can't use tta !"
assert 'tta_pipeline' in config, 'Cannot find ``tta_pipeline`` ' \
"in config. Can't use tta !"
config.model = ConfigDict(**config.tta_model, module=config.model)
test_data_cfg = config.test_dataloader.dataset
while 'dataset' in test_data_cfg:
test_data_cfg = test_data_cfg['dataset']
# batch_shapes_cfg will force control the size of the output image,
# it is not compatible with tta.
if 'batch_shapes_cfg' in test_data_cfg:
test_data_cfg.batch_shapes_cfg = None
test_data_cfg.pipeline = config.tta_pipeline
# TODO: TTA mode will error if cfg_options is not set.
# This is an mmdet issue and needs to be fixed later.
# build the model from a config file and a checkpoint file
model = init_detector(
config, args.checkpoint, device=args.device, cfg_options={})
if args.deploy:
switch_to_deploy(model)
if not os.path.exists(args.out_dir) and not args.show:
os.mkdir(args.out_dir)
# init visualizer
visualizer = VISUALIZERS.build(model.cfg.visualizer)
visualizer.dataset_meta = model.dataset_meta
# get file list
files, source_type = get_file_list(args.img)
# start detector inference
print(f'Performing inference on {len(files)} images.... '
'This may take a while.')
progress_bar = ProgressBar(len(files))
for file in files:
# read image
img = mmcv.imread(file)
# arrange slices
height, width = img.shape[:2]
sliced_image_object = slice_image(
img,
slice_height=args.patch_size,
slice_width=args.patch_size,
auto_slice_resolution=False,
overlap_height_ratio=args.patch_overlap_ratio,
overlap_width_ratio=args.patch_overlap_ratio,
)
# perform sliced inference
slice_results = []
start = 0
while True:
# prepare batch slices
end = min(start + args.batch_size, len(sliced_image_object))
images = []
for sliced_image in sliced_image_object.images[start:end]:
images.append(sliced_image)
# forward the model
slice_results.extend(inference_detector(model, images))
if end >= len(sliced_image_object):
break
start += args.batch_size
if source_type['is_dir']:
filename = os.path.relpath(file, args.img).replace('/', '_')
else:
filename = os.path.basename(file)
img = mmcv.imconvert(img, 'bgr', 'rgb')
out_file = None if args.show else os.path.join(args.out_dir, filename)
# export debug images
if args.debug:
# export sliced image results
name, suffix = os.path.splitext(filename)
shifted_instances = shift_predictions(
slice_results,
sliced_image_object.starting_pixels,
src_image_shape=(height, width))
merged_result = slice_results[0].clone()
merged_result.pred_instances = shifted_instances
debug_file_name = name + '_debug' + suffix
debug_out_file = None if args.show else os.path.join(
args.out_dir, debug_file_name)
visualizer.set_image(img.copy())
debug_grids = []
for starting_point in sliced_image_object.starting_pixels:
start_point_x = starting_point[0]
start_point_y = starting_point[1]
end_point_x = start_point_x + args.patch_size
end_point_y = start_point_y + args.patch_size
debug_grids.append(
[start_point_x, start_point_y, end_point_x, end_point_y])
debug_grids = np.array(debug_grids)
debug_grids[:, 0::2] = np.clip(debug_grids[:, 0::2], 1,
img.shape[1] - 1)
debug_grids[:, 1::2] = np.clip(debug_grids[:, 1::2], 1,
img.shape[0] - 1)
palette = np.random.randint(0, 256, size=(len(debug_grids), 3))
palette = [tuple(c) for c in palette]
line_styles = random.choices(['-', '-.', ':'], k=len(debug_grids))
visualizer.draw_bboxes(
debug_grids,
edge_colors=palette,
alpha=1,
line_styles=line_styles)
visualizer.draw_bboxes(
debug_grids, face_colors=palette, alpha=0.15)
visualizer.draw_texts(
list(range(len(debug_grids))),
debug_grids[:, :2] + 5,
colors='w')
visualizer.add_datasample(
debug_file_name,
visualizer.get_image(),
data_sample=merged_result,
draw_gt=False,
show=args.show,
wait_time=0,
out_file=debug_out_file,
pred_score_thr=args.score_thr,
)
if args.save_patch:
debug_patch_out_dir = os.path.join(args.out_dir,
f'{name}_patch')
for i, slice_result in enumerate(slice_results):
patch_out_file = os.path.join(
debug_patch_out_dir,
f'{filename}_slice_{i}_result.jpg')
image = mmcv.imconvert(sliced_image_object.images[i],
'bgr', 'rgb')
visualizer.add_datasample(
'patch_result',
image,
data_sample=slice_result,
draw_gt=False,
show=False,
wait_time=0,
out_file=patch_out_file,
pred_score_thr=args.score_thr,
)
image_result = merge_results_by_nms(
slice_results,
sliced_image_object.starting_pixels,
src_image_shape=(height, width),
nms_cfg={
'type': args.merge_nms_type,
'iou_threshold': args.merge_iou_thr
})
visualizer.add_datasample(
filename,
img,
data_sample=image_result,
draw_gt=False,
show=args.show,
wait_time=0,
out_file=out_file,
pred_score_thr=args.score_thr,
)
progress_bar.update()
if not args.show or (args.debug and args.save_patch):
print_log(
f'\nResults have been saved at {os.path.abspath(args.out_dir)}')
if __name__ == '__main__':
main()
|