File size: 10,539 Bytes
f97a499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import torch
import torch.nn as nn
import torch.nn.functional as F


norm_dict = {'BATCH': nn.BatchNorm2d, 'INSTANCE': nn.InstanceNorm2d, 'GROUP': nn.GroupNorm}
NUM_GROUPS = 16
__all__ = ['ConvNorm', 'ConvBlock', 'ConvBottleNeck', 'ResBlock', 'ResBottleneck', 'PromptResBlock', 'PromptResBottleneck', 'PromptAttentionModule', 'norm_dict', 'SobelEdge']


class Identity(nn.Module):
    """
    Identity mapping for building a residual connection
    """
    def __init__(self):
        super().__init__()

    def forward(self, x):
        return x


class ConvNorm(nn.Module):
    """
    Convolution and normalization
    """
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, leaky=True, norm='INSTANCE', activation=True):
        super().__init__()
        # determine basic attributes
        self.norm_type = norm
        padding = (kernel_size - 1) // 2

        # activation, support PReLU and common ReLU
        if activation:
            self.act = nn.LeakyReLU() if leaky else nn.ReLU(inplace=False)
            # self.act = nn.ELU() if leaky else nn.ReLU(inplace=True)
        else:
            self.act = None

        # instantiate layers
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False)

        if norm in ['BATCH', 'INSTANCE']:
            norm_layer = norm_dict[norm]
            self.norm = norm_layer(out_channels)
        elif norm == 'GROUP':
            norm_layer = norm_dict[norm]
            self.norm = norm_layer(NUM_GROUPS, in_channels)
        elif norm == 'NONE':
            self.norm = nn.Identity()
        else:
            raise NotImplementedError(f'Normalization type {norm} not implemented')

    def basic_forward(self, x):
        x = self.conv(x)
        x = self.norm(x)
        if self.act:
            x = self.act(x)
        return x

    def group_forward(self, x):
        x = self.norm(x)
        if self.act:
            x = self.act(x)
        x = self.conv(x)
        return x

    def forward(self, x):
        if self.norm_type in ['BATCH', 'INSTANCE']:
            return self.basic_forward(x)
        else:
            return self.group_forward(x)


class PromptAttentionModule(nn.Module):
    def __init__(self, in_channels: int, prompt_channels: int, mid_channels: int) -> None:
        super().__init__()
        self.gap = nn.AdaptiveAvgPool2d(1)
        self.conv_down = nn.Linear(in_channels, mid_channels)
        self.prompt_down = nn.Linear(prompt_channels, mid_channels)
        self.fc = nn.Linear(2 * mid_channels, in_channels)
    
    def forward(self, x: torch.Tensor, prompt_in: torch.Tensor):
        """
        Args:
            x: (B, C_im, H, W)
            prompt_in: (B, C_prompt)
        """
        x_gap = self.gap(x).squeeze(-1).squeeze(-1)  # (B, C_im)
        x_gap = self.conv_down(x_gap)  # (B, C_mid)
        prompt_down = self.prompt_down(prompt_in)  # (B, C_mid)
        gating = torch.cat([x_gap, prompt_down], dim=-1)  # (B, 2 * C_mid)
        gating = F.sigmoid(self.fc(F.relu(gating)))[..., None, None]  # (B, C_im, 1, 1)
        return x * gating


class ConvBlock(nn.Module):
    """
    Convolutional blocks
    """
    def __init__(self, in_channels, out_channels, stride=1, leaky=False, norm='INSTANCE'):
        super().__init__()
        self.norm_type = norm
        # activation, support PReLU and common ReLU
        self.act = nn.LeakyReLU() if leaky else nn.ReLU(inplace=False)
        # self.act = nn.ELU() if leaky else nn.ReLU(inplace=True)

        self.conv1 = ConvNorm(in_channels, out_channels, 3, stride, leaky, norm, True)
        self.conv2 = ConvNorm(out_channels, out_channels, 3, 1, leaky, norm, False)

    def forward(self, x):
        out = self.conv1(x)
        out = self.conv2(out)

        if self.norm_type != 'GROUP':
            out = self.act(out)

        return out


class ResBlock(nn.Module):
    """
    Residual blocks
    """
    def __init__(self, in_channels, out_channels, stride=1, use_dropout=False, leaky=False, norm='INSTANCE'):
        super().__init__()
        self.norm_type = norm
        self.act = nn.LeakyReLU() if leaky else nn.ReLU(inplace=False)
        self.dropout = nn.Dropout2d(p=0.1) if use_dropout else None
        # self.act = nn.ELU() if leaky else nn.ReLU(inplace=True)

        self.conv1 = ConvNorm(in_channels, out_channels, 3, stride, leaky, norm, True)
        self.conv2 = ConvNorm(out_channels, out_channels, 3, 1, leaky, norm, False)

        need_map = in_channels != out_channels or stride != 1
        self.id = ConvNorm(in_channels, out_channels, 1, stride, leaky, norm, False) if need_map else Identity()

    def forward(self, x):
        identity = x
        out = self.conv1(x)
        out = self.conv2(out)
        identity = self.id(identity)

        out = out + identity
        if self.norm_type != 'GROUP':
            out = self.act(out)

        if self.dropout:
            out = self.dropout(out)

        return out


class ConvBottleNeck(nn.Module):
    """
    Convolutional bottleneck blocks
    """
    def __init__(self, in_channels, out_channels, stride=1, leaky=False, norm='INSTANCE'):
        super().__init__()
        self.norm_type = norm
        middle_channels = in_channels // 4
        self.act = nn.LeakyReLU() if leaky else nn.ReLU(inplace=False)
        # self.act = nn.ELU() if leaky else nn.ReLU(inplace=True)

        self.conv1 = ConvNorm(in_channels, middle_channels, 1, 1, leaky, norm, True)
        self.conv2 = ConvNorm(middle_channels, middle_channels, 3, stride, leaky, norm, True)
        self.conv3 = ConvNorm(middle_channels, out_channels, 1, 1, leaky, norm, False)

    def forward(self, x):
        out = self.conv1(x)
        out = self.conv2(out)
        out = self.conv3(out)

        if self.norm_type != 'GROUP':
            out = self.act(out)

        return out


class ResBottleneck(nn.Module):
    """
    Residual bottleneck blocks
    """
    def __init__(self, in_channels, out_channels, stride=1, use_dropout=False, leaky=False, norm='INSTANCE'):
        super().__init__()
        self.norm_type = norm
        middle_channels = in_channels // 4
        self.act = nn.LeakyReLU() if leaky else nn.ReLU(inplace=False)
        self.dropout = nn.Dropout2d(p=0.1) if use_dropout else None
        # self.act = nn.ELU() if leaky else nn.ReLU(inplace=True)

        self.conv1 = ConvNorm(in_channels, middle_channels, 1, 1, leaky, norm, True)
        self.conv2 = ConvNorm(middle_channels, middle_channels, 3, stride, leaky, norm, True)
        self.conv3 = ConvNorm(middle_channels, out_channels, 1, 1, leaky, norm, False)

        need_map = in_channels != out_channels or stride != 1
        self.id = ConvNorm(in_channels, out_channels, 1, stride, leaky, norm, False) if need_map else Identity()

    def forward(self, x):
        identity = x
        out = self.conv1(x)
        out = self.conv2(out)
        out = self.conv3(out)
        identity = self.id(identity)

        out = out + identity
        if self.norm_type != 'GROUP':
            out = self.act(out)

        if self.dropout:
            out = self.dropout(out)

        return out


class PromptResBlock(nn.Module):
    """
    Residual blocks
    """
    def __init__(self, in_channels, out_channels, stride=1, use_dropout=False, leaky=False, norm='INSTANCE'):
        super().__init__()
        self.norm_type = norm
        self.act = nn.LeakyReLU() if leaky else nn.ReLU(inplace=False)
        self.dropout = nn.Dropout2d(p=0.1) if use_dropout else None
        # self.act = nn.ELU() if leaky else nn.ReLU(inplace=True)

        self.conv1 = ConvNorm(in_channels, out_channels, 3, stride, leaky, norm, True)
        self.conv2 = ConvNorm(out_channels, out_channels, 3, 1, leaky, norm, False)
        self.attn = PromptAttentionModule(out_channels, 512, out_channels // 4)

        need_map = in_channels != out_channels or stride != 1
        self.id = ConvNorm(in_channels, out_channels, 1, stride, leaky, norm, False) if need_map else Identity()

    def forward(self, x, prompt_in):
        identity = x
        out = self.conv1(x)
        out = self.conv2(out)
        out = self.attn(out, prompt_in)
        identity = self.id(identity)

        out = out + identity
        if self.norm_type != 'GROUP':
            out = self.act(out)

        if self.dropout:
            out = self.dropout(out)

        return out


class PromptResBottleneck(nn.Module):
    """
    Residual bottleneck blocks
    """
    def __init__(self, in_channels, out_channels, stride=1, use_dropout=False, leaky=False, norm='INSTANCE'):
        super().__init__()
        self.norm_type = norm
        middle_channels = in_channels // 4
        self.act = nn.LeakyReLU() if leaky else nn.ReLU(inplace=False)
        self.dropout = nn.Dropout2d(p=0.1) if use_dropout else None
        # self.act = nn.ELU() if leaky else nn.ReLU(inplace=True)

        self.conv1 = ConvNorm(in_channels, middle_channels, 1, 1, leaky, norm, True)
        self.conv2 = ConvNorm(middle_channels, middle_channels, 3, stride, leaky, norm, True)
        self.conv3 = ConvNorm(middle_channels, out_channels, 1, 1, leaky, norm, False)
        self.attn = PromptAttentionModule(out_channels, 512, out_channels // 4)

        need_map = in_channels != out_channels or stride != 1
        self.id = ConvNorm(in_channels, out_channels, 1, stride, leaky, norm, False) if need_map else Identity()

    def forward(self, x, prompt_in):
        identity = x
        out = self.conv1(x)
        out = self.conv2(out)
        out = self.conv3(out)
        out = self.attn(out, prompt_in)
        identity = self.id(identity)

        out = out + identity
        if self.norm_type != 'GROUP':
            out = self.act(out)

        if self.dropout:
            out = self.dropout(out)

        return out


class SobelEdge(nn.Module):
    def __init__(self, input_dim, channels, kernel_size=3, stride=1):
        super().__init__()
        conv = getattr(nn, 'Conv%dd' % input_dim)
        self.filter = conv(channels, channels, kernel_size, stride, padding=(kernel_size - 1) // 2,
                           groups=channels, bias=False)
        sobel = [[1, 2, 1], [0, 0, 0], [-1, -2, -1]]
        sobel_kernel = torch.tensor(sobel, dtype=torch.float32).unsqueeze(0).expand([channels, 1] + [kernel_size] * input_dim)
        self.filter.weight = nn.Parameter(sobel_kernel, requires_grad=False)

    def forward(self, x):
        with torch.no_grad():
            out = self.filter(x)
        return out