Spaces:
Runtime error
Runtime error
File size: 13,032 Bytes
d1b3e97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import pandas_profiling as pp
import pandas as pd
import tensorflow as tf
from datasets import load_dataset
from tensorflow.python.framework import tensor_shape
#LOINC
datasetLOINC = load_dataset("awacke1/LOINC-CodeSet-Value-Description.csv", split="train")
#SNOMED:
datasetSNOMED = load_dataset("awacke1/SNOMED-CT-Code-Value-Semantic-Set.csv", split="train")
#eCQM:
dataseteCQM = load_dataset("awacke1/eCQM-Code-Value-Semantic-Set.csv", split="train")
# map using autotokenizer
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
dataset = datasetLOINC.map(lambda examples: tokenizer(examples["Description"]), batched=True)
JSONOBJ2=dataset[0]
print(JSONOBJ2)
sw = datasetLOINC.filter(lambda example: example["Description"].startswith("Allergy"))
len(sw)
print(sw)
print(datasetLOINC)
print(datasetSNOMED)
print(dataseteCQM)
# play with some dataset tools before the show:
#print(start_with_ar["Description"])
#---
#Main Stage - Begin!
#---
import os
import json
import numpy as np
import gradio as gr
HF_TOKEN = os.environ.get("HF_TOKEN")
CHOICES = ["SNOMED", "LOINC", "CQM"]
JSONOBJ = """{"items":{"item":[{"id": "0001","type": null,"is_good": false,"ppu": 0.55,"batters":{"batter":[{ "id": "1001", "type": "Regular" },{ "id": "1002", "type": "Chocolate" },{ "id": "1003", "type": "Blueberry" },{ "id": "1004", "type": "Devil's Food" }]},"topping":[{ "id": "5001", "type": "None" },{ "id": "5002", "type": "Glazed" },{ "id": "5005", "type": "Sugar" },{ "id": "5007", "type": "Powdered Sugar" },{ "id": "5006", "type": "Chocolate with Sprinkles" },{ "id": "5003", "type": "Chocolate" },{ "id": "5004", "type": "Maple" }]}]}}"""
def profile_dataset(dataset=datasetSNOMED, username="awacke1", token=HF_TOKEN, dataset_name="awacke1/SNOMED-CT-Code-Value-Semantic-Set.csv"):
df = pd.read_csv(dataset.Description)
if len(df.columns) <= 15:
profile = pp.ProfileReport(df, title=f"{dataset_name} Report")
else:
profile = pp.ProfileReport(df, title=f"{dataset_name} Report", minimal = True)
repo_url = create_repo(f"{username}/{dataset_name}", repo_type = "space", token = token, space_sdk = "static", private=False)
profile.to_file("./index.html")
upload_file(path_or_fileobj ="./index.html", path_in_repo = "index.html", repo_id =f"{username}/{dataset_name}", repo_type = "space", token=token)
readme = f"---\ntitle: {dataset_name}\nemoji: β¨\ncolorFrom: green\ncolorTo: red\nsdk: static\npinned: false\ntags:\n- dataset-report\n---"
with open("README.md", "w+") as f:
f.write(readme)
upload_file(path_or_fileobj ="./README.md", path_in_repo = "README.md", repo_id =f"{username}/{dataset_name}", repo_type = "space", token=token)
return f"Your dataset report will be ready at {repo_url}"
#def lowercase_title(example):
# return {"Description": example[title].lower()}
# demonstrate map function of dataset
#JSONOBJ_MAP=datasetLOINC.map(lowercase_title)
#JSONOBJ_MAP=datasetLOINC.filter(lambda example: example["Description"].startswith("Mental health"))
def concatenate_text(examples):
return {
"text": examples["Code"]
+ " \n "
+ examples["Description"]
+ " \n "
+ examples["Purpose: Clinical Focus"]
}
def cls_pooling(model_output):
return model_output.last_hidden_state[:, 0]
def get_embeddings(text_list):
encoded_input = tokenizer(
text_list, padding=True, truncation=True, return_tensors="tf"
)
encoded_input = {k: v for k, v in encoded_input.items()}
model_output = model(**encoded_input)
return cls_pooling(model_output)
def fn( text1, text2, num, slider1, slider2, single_checkbox, checkboxes, radio, dropdown, im1, im2, im3, im4,
video, audio1, audio2, file, df1, df2,):
#def fn( text1, text2, single_checkbox, checkboxes, radio, im4, file, df1, df2,):
searchTerm = text1
searchTermSentence = text2
start_with_searchTermLOINC = datasetLOINC.filter(lambda example:example["Description"].startswith('Allergy')) #Allergy
# FAISS
columns = start_with_searchTermLOINC.column_names
columns_to_keep = ["Value Set Name", "Code", "Description", "Purpose: Clinical Focus", "Code System OID"]
columns_to_remove = set(columns_to_keep).symmetric_difference(columns)
start_with_searchTermLOINC = start_with_searchTermLOINC.remove_columns(columns_to_remove)
start_with_searchTermLOINC
start_with_searchTermLOINC.set_format("pandas")
df = start_with_searchTermLOINC[:]
df["Purpose: Clinical Focus"][0]
df4 = df.explode("Purpose: Clinical Focus", ignore_index=True)
df4.head(4)
from datasets import Dataset
clinical_dataset = Dataset.from_pandas(df4)
clinical_dataset
clinical_dataset = clinical_dataset.map(lambda x: {"c_length": len(x["Description"].split())})
clinical_dataset = clinical_dataset.filter(lambda x: x["c_length"] > 15)
clinical_dataset
clinical_dataset = clinical_dataset.map(concatenate_text)
#embedding = get_embeddings(clinical_dataset["text"][0])
#embedding.shape
from transformers import AutoTokenizer, TFAutoModel
model_ckpt = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
model = TFAutoModel.from_pretrained(model_ckpt, from_pt=True)
# TensorShape([1, 768])
tf.shape([1, 768])
embeddings_dataset = clinical_dataset.map(
lambda x: {"embeddings": get_embeddings(x["text"]).numpy()[0]})
# embeddings_dataset.add_faiss_index(column="embeddings")
# question = "How can I load a dataset offline?"
# question_embedding = get_embeddings([question]).numpy()
# question_embedding.shape
# scores, samples = embeddings_dataset.get_nearest_examples("embeddings", question_embedding, k=5)
# import pandas as pd
# samples_df = pd.DataFrame.from_dict(samples)
# samples_df["scores"] = scores
# samples_df.sort_values("scores", ascending=False, inplace=True)
# "text": examples["Code"]
# + " \n "
# + examples["Description"]
# + " \n "
# + examples["Purpose: Clinical Focus"]
# for _, row in samples_df.iterrows():
# print(f"Code: {row.Code}")
# print(f"Description: {row.Description}")
# #print(f"Purpose: Clinical Focus: {row.Purpose: Clinical Focus}")
# #print(f"URL: {row.html_url}")
# print("=" * 50)
# print()
# SNOMED and CQM ---------------
start_with_searchTermSNOMED = datasetSNOMED.filter(lambda example: example["Description"].startswith('Hospital')) #Hospital
start_with_searchTermCQM = dataseteCQM.filter(lambda example: example["Description"].startswith('Telephone')) #Telephone
print(start_with_searchTermLOINC )
print(start_with_searchTermSNOMED )
print(start_with_searchTermCQM)
#print(start_with_searchTermLOINC["train"][0] )
#print(start_with_searchTermSNOMED["train"][0] )
#print(start_with_searchTermCQM["train"][0] )
#returnMsg=profile_dataset()
#print(returnMsg)
# try:
#top1matchLOINC = json.loads(start_with_searchTermLOINC['train'])
#top1matchSNOMED = json.loads(start_with_searchTermSNOMED['train'])
#top1matchCQM = json.loads(start_with_searchTermCQM['train'])
# top1matchLOINC = json.loads(start_with_searchTermLOINC)
# top1matchSNOMED = json.loads(start_with_searchTermSNOMED)
# top1matchCQM = json.loads(start_with_searchTermCQM)
# except:
# print('Hello')
#print(start_with_searchTermLOINC[0])
#print(start_with_searchTermSNOMED[0] )
#print(start_with_searchTermCQM[0] )
#print(returnMsg)
# print("Datasets Processed")
return (
(text1 if single_checkbox else text2)
+ ", selected:"
+ ", ".join(checkboxes), # Text
{
"positive": num / (num + slider1 + slider2),
"negative": slider1 / (num + slider1 + slider2),
"neutral": slider2 / (num + slider1 + slider2),
}, # Label
(audio1[0], np.flipud(audio1[1]))
if audio1 is not None else os.path.join(os.path.dirname(__file__), "files/cantina.wav"), # Audio
np.flipud(im1)
if im1 is not None else os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"), # Image
video
if video is not None else os.path.join(os.path.dirname(__file__), "files/world.mp4"), # Video
[
("The", "art"),
("quick brown", "adj"),
("fox", "nn"),
("jumped", "vrb"),
("testing testing testing", None),
("over", "prp"),
("the", "art"),
("testing", None),
("lazy", "adj"),
("dogs", "nn"),
(".", "punc"),
] + [(f"test {x}", f"test {x}") for x in range(10)], # HighlightedText
[
("The testing testing testing", None),
("over", 0.6),
("the", 0.2),
("testing", None),
("lazy", -0.1),
("dogs", 0.4),
(".", 0),
] + [(f"test", x / 10) for x in range(-10, 10)], # HighlightedText
#json.loads(JSONOBJ), # JSON
start_with_searchTermLOINC.to_json(orient="records", path_or_buf="None"),
#json.dumps(json.loads(start_with_searchTermLOINC['train'].to_json(orient="records", path_or_buf="None"))),
"<button style='background-color: red'>Click Me: " + radio + "</button>", # HTML
os.path.join(os.path.dirname(__file__), "files/titanic.csv"),
df1, # Dataframe
np.random.randint(0, 10, (4, 4)), # Dataframe
df2, # Timeseries
)
demo = gr.Interface(
fn,
inputs=[
gr.Textbox(value="Allergy", label="Textbox"),
gr.Textbox(lines=3, value="Bathing", placeholder="Type here..", label="Textbox 2"),
gr.Number(label="Number", value=42),
gr.Slider(10, 20, value=15, label="Slider: 10 - 20"),
gr.Slider(maximum=20, step=0.04, label="Slider: step @ 0.04"),
gr.Checkbox(label="Check for NER Match on Submit"),
gr.CheckboxGroup(label="Clinical Terminology to Check", choices=CHOICES, value=CHOICES[0:2]),
gr.Radio(label="Preferred Terminology Output", choices=CHOICES, value=CHOICES[2]),
gr.Dropdown(label="Dropdown", choices=CHOICES),
gr.Image(label="Image"),
gr.Image(label="Image w/ Cropper", tool="select"),
gr.Image(label="Sketchpad", source="canvas"),
gr.Image(label="Webcam", source="webcam"),
gr.Video(label="Video"),
gr.Audio(label="Audio"),
gr.Audio(label="Microphone", source="microphone"),
gr.File(label="File"),
gr.Dataframe(label="Filters", headers=["Name", "Age", "Gender"]),
gr.Timeseries(x="time", y=["price", "value"], colors=["pink", "purple"]),
],
outputs=[
gr.Textbox(label="Textbox"),
gr.Label(label="Label"),
gr.Audio(label="Audio"),
gr.Image(label="Image"),
gr.Video(label="Video"),
gr.HighlightedText(label="HighlightedText", color_map={"punc": "pink", "test 0": "blue"}),
gr.HighlightedText(label="HighlightedText", show_legend=True),
gr.JSON(label="JSON"),
gr.HTML(label="HTML"),
gr.File(label="File"),
gr.Dataframe(label="Dataframe"),
gr.Dataframe(label="Numpy"),
gr.Timeseries(x="time", y=["price", "value"], label="Timeseries"),
],
examples=[
[
"Allergy",
"Admission",
10,
12,
4,
True,
["SNOMED", "LOINC", "CQM"],
"SNOMED",
"bar",
os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"),
os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"),
os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"),
os.path.join(os.path.dirname(__file__), "files/cheetah1.jpg"),
os.path.join(os.path.dirname(__file__), "files/world.mp4"),
os.path.join(os.path.dirname(__file__), "files/cantina.wav"),
os.path.join(os.path.dirname(__file__), "files/cantina.wav"),
os.path.join(os.path.dirname(__file__), "files/titanic.csv"),
[[1, 2, 3], [3, 4, 5]],
os.path.join(os.path.dirname(__file__), "files/time.csv"),
]
]
* 3,
theme="default",
title="βοΈπ§ π¬π§¬ Clinical Terminology Auto Mapper AI π©ββοΈπ©ΊβοΈπ",
cache_examples=False,
description="Clinical Terminology Auto Mapper AI",
article="Learn more at [Yggdrasil](https://github.com/AaronCWacker/Yggdrasil)",
# live=True,
)
if __name__ == "__main__":
demo.launch(debug=True) |