File size: 4,870 Bytes
2bb21bd
 
f6bb466
 
2bb21bd
93e6bc9
2bb21bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef7492c
2bb21bd
 
ef7492c
2bb21bd
 
ef7492c
2bb21bd
ef7492c
2bb21bd
93e6bc9
 
 
 
 
 
 
 
 
 
2bb21bd
ca0ea4c
c97092f
2bb21bd
 
ca0ea4c
eddc0ef
2bb21bd
 
 
 
 
 
 
 
 
 
 
 
 
b762f11
2bb21bd
 
 
 
1678c48
2bb21bd
de05f69
 
 
 
2bb21bd
 
 
 
 
 
 
 
 
 
 
4d300d7
 
 
 
 
 
 
 
 
2bb21bd
 
 
 
 
93e6bc9
2bb21bd
 
57f1b5a
 
c9f12d5
57f1b5a
2bb21bd
57f1b5a
 
d83c819
 
 
 
 
2bb21bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
from gradio_client import Client
import json
import re

def get_caption_from_kosmos(image_in):
    kosmos2_client = Client("https://ydshieh-kosmos-2.hf.space/")

    kosmos2_result = kosmos2_client.predict(
        image_in,	# str (filepath or URL to image) in 'Test Image' Image component
        "Detailed",	# str in 'Description Type' Radio component
        fn_index=4
    )

    print(f"KOSMOS2 RETURNS: {kosmos2_result}")

    with open(kosmos2_result[1], 'r') as f:
        data = json.load(f)
    
    reconstructed_sentence = []
    for sublist in data:
        reconstructed_sentence.append(sublist[0])

    full_sentence = ' '.join(reconstructed_sentence)
    #print(full_sentence)

    # Find the pattern matching the expected format ("Describe this image in detail:" followed by optional space and then the rest)...
    pattern = r'^Describe this image in detail:\s*(.*)$'
    # Apply the regex pattern to extract the description text.
    match = re.search(pattern, full_sentence)
    if match:
        description = match.group(1)
        print(description)
    else:
        print("Unable to locate valid description.")

    # Find the last occurrence of "."
    last_period_index = description.rfind('.')

    # Truncate the string up to the last period
    truncated_caption = description[:last_period_index + 1]

    # print(truncated_caption)
    print(f"\n—\nIMAGE CAPTION: {truncated_caption}")
    
    return truncated_caption

def get_caption(image_in):
    client = Client("https://vikhyatk-moondream1.hf.space/--replicas/ggrds/")
    result = client.predict(
		image_in,	# filepath  in 'image' Image component
		"Describe precisely the image in one sentence.",	# str  in 'Question' Textbox component
		api_name="/predict"
    )
    print(result)
    return result

def get_magnet(prompt):
    amended_prompt = f"{prompt}"
    print(amended_prompt)
    client = Client("https://fffiloni-magnet.hf.space/--replicas/oo8sb/")
    result = client.predict(
        "facebook/audio-magnet-medium",	# Literal['facebook/magnet-small-10secs', 'facebook/magnet-medium-10secs', 'facebook/magnet-small-30secs', 'facebook/magnet-medium-30secs', 'facebook/audio-magnet-small', 'facebook/audio-magnet-medium']  in 'Model' Radio component
        "",	# str  in 'Model Path (custom models)' Textbox component
        amended_prompt,	# str  in 'Input Text' Textbox component
        3,	# float  in 'Temperature' Number component
        0.9,	# float  in 'Top-p' Number component
        10,	# float  in 'Max CFG coefficient' Number component
        1,	# float  in 'Min CFG coefficient' Number component
        20,	# float  in 'Decoding Steps (stage 1)' Number component
        10,	# float  in 'Decoding Steps (stage 2)' Number component
        10,	# float  in 'Decoding Steps (stage 3)' Number component
        10,	# float  in 'Decoding Steps (stage 4)' Number component
        "prod-stride1 (new!)",	# Literal['max-nonoverlap', 'prod-stride1 (new!)']  in 'Span Scoring' Radio component
        api_name="/predict_full"
    )
    print(result)
    return result[0]['video']

def get_audioldm(prompt):
    client = Client("https://haoheliu-audioldm2-text2audio-text2music.hf.space/")
    result = client.predict(
        prompt,	# str in 'Input text' Textbox component
        "Low quality. Music.",	# str in 'Negative prompt' Textbox component
        10,	# int | float (numeric value between 5 and 15) in 'Duration (seconds)' Slider component
        3.5,	# int | float (numeric value between 0 and 7) in 'Guidance scale' Slider component
        45,	# int | float in 'Seed' Number component
        3,	# int | float (numeric value between 1 and 5) in 'Number waveforms to generate' Slider component
        fn_index=1
    )
    print(result)
    return result

def infer(image_in):
    caption = get_caption(image_in)
    magnet_result = get_magnet(caption)
    audioldm_result = get_audioldm(caption)
    return magnet_result, audioldm_result

css="""
#col-container{
    margin: 0 auto;
    max-width: 720px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML("""
        <h2 style="text-align: center;">
            Image to SFX
        </h2>
        <p style="text-align: center;">
            Compare MAGNet and AudioLDM2 sound effects generation from image caption.
        </p>
        """)
        
        with gr.Column():
            image_in = gr.Image(sources=["upload"], type="filepath", label="Image input", value="oiseau.png")
            submit_btn = gr.Button("Submit")
        with gr.Row():
            magnet_o = gr.Video(label="MAGNet output")
            audioldm2_o = gr.Video(label="AudioLDM2 output")
    submit_btn.click(
        fn=infer,
        inputs=[image_in],
        outputs=[magnet_o, audioldm2_o]
    )
demo.queue(max_size=10).launch(debug=True)