Spaces:
Build error
Build error
File size: 13,328 Bytes
fd5e0f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import os
import cv2
import torch
import matplotlib
import numpy as np
import open3d as o3d
from PIL import Image
from copy import deepcopy
from omegaconf import OmegaConf
from scipy.spatial import cKDTree
def gen_config(cfg_path):
return OmegaConf.load(cfg_path)
def get_focal_from_fov(new_fov, H, W):
# NOTE: top-left pixel should be (0,0)
if W >= H:
f = (W / 2.0) / np.tan(np.deg2rad(new_fov / 2.0))
else:
f = (H / 2.0) / np.tan(np.deg2rad(new_fov / 2.0))
return f
def get_intrins_from_fov(new_fov, H, W):
# NOTE: top-left pixel should be (0,0)
f = get_focal_from_fov(new_fov,H,W)
new_cu = (W / 2.0) - 0.5
new_cv = (H / 2.0) - 0.5
new_intrins = np.array([
[f, 0, new_cu ],
[0, f, new_cv ],
[0, 0, 1 ]
])
return new_intrins
def dpt2xyz(dpt,intrinsic):
# get grid
height, width = dpt.shape[0:2]
grid_u = np.arange(width)[None,:].repeat(height,axis=0)
grid_v = np.arange(height)[:,None].repeat(width,axis=1)
grid = np.concatenate([grid_u[:,:,None],grid_v[:,:,None],np.ones_like(grid_v)[:,:,None]],axis=-1)
uvz = grid * dpt[:,:,None]
# inv intrinsic
inv_intrinsic = np.linalg.inv(intrinsic)
xyz = np.einsum(f'ab,hwb->hwa',inv_intrinsic,uvz)
return xyz
def dpt2xyz_torch(dpt,intrinsic):
# get grid
height, width = dpt.shape[0:2]
grid_u = torch.arange(width)[None,:].repeat(height,1)
grid_v = torch.arange(height)[:,None].repeat(1,width)
grid = torch.concatenate([grid_u[:,:,None],grid_v[:,:,None],torch.ones_like(grid_v)[:,:,None]],axis=-1).to(dpt)
uvz = grid * dpt[:,:,None]
# inv intrinsic
inv_intrinsic = torch.linalg.inv(intrinsic)
xyz = torch.einsum(f'ab,hwb->hwa',inv_intrinsic,uvz)
return xyz
def visual_pcd(xyz, color=None, normal = True):
if hasattr(xyz,'ndim'):
xyz_norm = np.mean(np.sqrt(np.sum(np.square(xyz),axis=1)))
xyz = xyz / xyz_norm
xyz = xyz.reshape(-1,3)
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(xyz)
else: pcd = xyz
if color is not None:
color = color.reshape(-1,3)
pcd.colors = o3d.utility.Vector3dVector(color)
if normal:
pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(0.2, 20))
o3d.visualization.draw_geometries([pcd])
def visual_pcds(xyzs, normal = True):
pcds = []
for xyz in xyzs:
if hasattr(xyz,'ndim'):
# xyz_norm = np.mean(np.sqrt(np.sum(np.square(xyz),axis=1)))
# xyz = xyz / xyz_norm
xyz = xyz.reshape(-1,3)
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(xyz)
pcd.paint_uniform_color(np.random.rand(3))
else: pcd = xyz
if normal:
pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(0.2, 20))
pcds.append(pcd)
o3d.visualization.draw_geometries(pcds)
def save_pic(input_pic:np.array,save_fn,normalize=True):
# avoid replace
pic = deepcopy(input_pic).astype(np.float32)
pic = np.nan_to_num(pic)
if normalize:
vmin = np.percentile(pic, 2)
vmax = np.percentile(pic, 98)
pic = (pic - vmin) / (vmax - vmin)
pic = (pic * 255.0).clip(0, 255)
if save_fn is not None:
pic_save = Image.fromarray(pic.astype(np.uint8))
pic_save.save(save_fn)
return pic
def depth_colorize(dpt,sky_mask=None):
cm = matplotlib.colormaps["Spectral"]
depth = dpt_normalize(dpt,sky_mask)
img_colored_np = cm(depth, bytes=False)[:, :, 0:3] # value from 0 to 1
return img_colored_np
def dpt_normalize(dpt, sky_mask = None):
if sky_mask is not None:
pic = dpt[~sky_mask]
else:
pic = dpt
vmin = np.percentile(pic, 2)
vmax = np.percentile(pic, 98)
dpt = (deepcopy(dpt) - vmin) / (vmax - vmin)
if sky_mask is not None:
dpt[sky_mask] = 1.
return dpt
def transform_points(pts,transform):
h,w=transform.shape
if h==3 and w==3:
return pts @ transform.T
if h==3 and w==4:
return pts @ transform[:,:3].T + transform[:,3:].T
elif h==4 and w==4:
return pts @ transform[0:3,:3].T + transform[0:3,3:].T
else: raise NotImplementedError
def get_nml_from_quant(quant):
'''
input N*4
outut N*3
follow https://arxiv.org/pdf/2404.17774
'''
w=quant[:,0]
x=quant[:,1]
y=quant[:,2]
z=quant[:,3]
n0 = 2*x*z+2*y*w
n1 = 2*y*z-2*x*w
n2 = 1-2*x*x-2*y*y
nml = torch.cat((n0[:,None],n1[:,None],n2[:,None]),dim=1)
return nml
def quaternion_from_matrix(M):
m00 = M[..., 0, 0]
m01 = M[..., 0, 1]
m02 = M[..., 0, 2]
m10 = M[..., 1, 0]
m11 = M[..., 1, 1]
m12 = M[..., 1, 2]
m20 = M[..., 2, 0]
m21 = M[..., 2, 1]
m22 = M[..., 2, 2]
K = torch.zeros((len(M),4,4)).to(M)
K[:,0,0] = m00 - m11 - m22
K[:,1,0] = m01 + m10
K[:,1,1] = m11 - m00 - m22
K[:,2,0] = m02 + m20
K[:,2,1] = m12 + m21
K[:,2,2] = m22 - m00 - m11
K[:,3,0] = m21 - m12
K[:,3,1] = m02 - m20
K[:,3,2] = m10 - m01
K[:,3,3] = m00 + m11 + m22
K = K/3
# quaternion is eigenvector of K that corresponds to largest eigenvalue
w, V = torch.linalg.eigh(K)
q = V[torch.arange(len(V)),:,torch.argmax(w,dim=1)]
q = q[:,[3, 0, 1, 2]]
for i in range(len(q)):
if q[i,0]<0.:
q[i] = -q[i]
return q
def numpy_quaternion_from_matrix(M):
H,W = M.shape[0:2]
M = M.reshape(-1,3,3)
m00 = M[..., 0, 0]
m01 = M[..., 0, 1]
m02 = M[..., 0, 2]
m10 = M[..., 1, 0]
m11 = M[..., 1, 1]
m12 = M[..., 1, 2]
m20 = M[..., 2, 0]
m21 = M[..., 2, 1]
m22 = M[..., 2, 2]
K = np.zeros((len(M),4,4))
K[...,0,0] = m00 - m11 - m22
K[...,1,0] = m01 + m10
K[...,1,1] = m11 - m00 - m22
K[...,2,0] = m02 + m20
K[...,2,1] = m12 + m21
K[...,2,2] = m22 - m00 - m11
K[...,3,0] = m21 - m12
K[...,3,1] = m02 - m20
K[...,3,2] = m10 - m01
K[...,3,3] = m00 + m11 + m22
K = K/3
# quaternion is eigenvector of K that corresponds to largest eigenvalue
w, V = np.linalg.eigh(K)
q = V[np.arange(len(V)),:,np.argmax(w,axis=1)]
q = q[...,[3, 0, 1, 2]]
for i in range(len(q)):
if q[i,0]<0.:
q[i] = -q[i]
q = q.reshape(H,W,4)
return q
def numpy_normalize(input):
input = input / (np.sqrt(np.sum(np.square(input),axis=-1,keepdims=True))+1e-5)
return input
class suppress_stdout_stderr(object):
'''
Avoid terminal output of diffusion processings!
A context manager for doing a "deep suppression" of stdout and stderr in
Python, i.e. will suppress all print, even if the print originates in a
compiled C/Fortran sub-function.
This will not suppress raised exceptions, since exceptions are printed
to stderr just before a script exits, and after the context manager has
exited (at least, I think that is why it lets exceptions through).
'''
def __init__(self):
# Open a pair of null files
self.null_fds = [os.open(os.devnull, os.O_RDWR) for x in range(2)]
# Save the actual stdout (1) and stderr (2) file descriptors.
self.save_fds = (os.dup(1), os.dup(2))
def __enter__(self):
# Assign the null pointers to stdout and stderr.
os.dup2(self.null_fds[0], 1)
os.dup2(self.null_fds[1], 2)
def __exit__(self, *_):
# Re-assign the real stdout/stderr back to (1) and (2)
os.dup2(self.save_fds[0], 1)
os.dup2(self.save_fds[1], 2)
# Close the null files
os.close(self.null_fds[0])
os.close(self.null_fds[1])
import torch.nn.functional as F
def nei_delta(input,pad=2):
if not type(input) is torch.Tensor:
input = torch.from_numpy(input.astype(np.float32))
if len(input.shape) < 3:
input = input[:,:,None]
h,w,c = input.shape
# reshape
input = input.permute(2,0,1)[None]
input = F.pad(input, pad=(pad,pad,pad,pad), mode='replicate')
kernel = 2*pad + 1
input = F.unfold(input,[kernel,kernel],padding=0)
input = input.reshape(c,-1,h,w).permute(2,3,0,1).squeeze() # hw(3)*25
return torch.amax(input,dim=-1),torch.amin(input,dim=-1),input
def inpaint_mask(render_dpt,render_rgb):
# edge filter delta thres
valid_dpt = render_dpt[render_dpt>1e-3]
valid_dpt = torch.sort(valid_dpt).values
max = valid_dpt[int(.85*len(valid_dpt))]
min = valid_dpt[int(.15*len(valid_dpt))]
ths = (max-min) * 0.2
# nei check
nei_max, nei_min, _ = nei_delta(render_dpt,pad=1)
edge_mask = (nei_max - nei_min) > ths
# render hole
hole_mask = render_dpt < 1e-3
# whole mask -- original noise and sparse
mask = edge_mask | hole_mask
mask = mask.cpu().float().numpy()
# modify rgb sightly for small holes : blur and sharpen
render_rgb = render_rgb.detach().cpu().numpy()
render_rgb = (render_rgb*255).astype(np.uint8)
render_rgb_blur = cv2.medianBlur(render_rgb,5)
render_rgb[mask>.5] = render_rgb_blur[mask>.5] # blur and replace small holes
render_rgb = torch.from_numpy((render_rgb/255).astype(np.float32)).to(render_dpt)
# slightly clean mask
kernel = np.ones((5,5),np.uint8)
mask = cv2.erode(mask,kernel,iterations=2)
mask = cv2.dilate(mask,kernel,iterations=7)
mask = mask > 0.5
return mask,render_rgb
def alpha_inpaint_mask(render_alpha):
render_alpha = render_alpha.detach().squeeze().cpu().numpy()
paint_mask = 1.-np.around(render_alpha)
# slightly clean mask
kernel = np.ones((5,5),np.uint8)
paint_mask = cv2.erode(paint_mask,kernel,iterations=1)
paint_mask = cv2.dilate(paint_mask,kernel,iterations=3)
paint_mask = paint_mask > 0.5
return paint_mask
def edge_filter(metric_dpt,sky=None,times=0.1):
sky = np.zeros_like(metric_dpt,bool) if sky is None else sky
_max = np.percentile(metric_dpt[~sky],95)
_min = np.percentile(metric_dpt[~sky], 5)
_range = _max - _min
nei_max,nei_min,_ = nei_delta(metric_dpt)
delta = (nei_max-nei_min).numpy()
edge = delta > times*_range
return edge
def fill_mask_with_nearest(imgs, mask):
# mask and un-mask pixel coors
mask_coords = np.column_stack(np.where(mask > .5))
non_mask_coords = np.column_stack(np.where(mask < .5))
# kd-tree on un-masked pixels
tree = cKDTree(non_mask_coords)
# nn search of masked pixels
_, idxs = tree.query(mask_coords)
# replace and fill
for i, coord in enumerate(mask_coords):
nearest_coord = non_mask_coords[idxs[i]]
for img in imgs:
img[coord[0], coord[1]] = img[nearest_coord[0], nearest_coord[1]]
return imgs
def edge_rectify(metric_dpt,rgb,sky=None):
edge = edge_filter(metric_dpt,sky)
process_rgb = deepcopy(rgb)
metric_dpt,process_rgb = fill_mask_with_nearest([metric_dpt,process_rgb],edge)
return metric_dpt,process_rgb
from plyfile import PlyData, PlyElement
def color2feat(color):
max_sh_degree = 3
fused_color = (color-0.5)/0.28209479177387814
features = np.zeros((fused_color.shape[0], 3, (max_sh_degree + 1) ** 2))
features = torch.from_numpy(features.astype(np.float32))
features[:, :3, 0 ] = fused_color
features[:, 3:, 1:] = 0.0
features_dc = features[:,:,0:1]
features_rest = features[:,:,1: ]
return features_dc,features_rest
def construct_list_of_attributes(features_dc,features_rest,scale,rotation):
l = ['x', 'y', 'z', 'nx', 'ny', 'nz']
# All channels except the 3 DC
for i in range(features_dc.shape[1]*features_dc.shape[2]):
l.append('f_dc_{}'.format(i))
for i in range(features_rest.shape[1]*features_rest.shape[2]):
l.append('f_rest_{}'.format(i))
l.append('opacity')
for i in range(scale.shape[1]):
l.append('scale_{}'.format(i))
for i in range(rotation.shape[1]):
l.append('rot_{}'.format(i))
return l
def save_ply(scene,path):
xyz = torch.cat([gf.xyz.reshape(-1,3) for gf in scene.gaussian_frames],dim=0).detach().cpu().numpy()
scale = torch.cat([gf.scale.reshape(-1,3) for gf in scene.gaussian_frames],dim=0).detach().cpu().numpy()
opacities = torch.cat([gf.opacity.reshape(-1) for gf in scene.gaussian_frames],dim=0)[:,None].detach().cpu().numpy()
rotation = torch.cat([gf.rotation.reshape(-1,4) for gf in scene.gaussian_frames],dim=0).detach().cpu().numpy()
rgb = torch.sigmoid(torch.cat([gf.rgb.reshape(-1,3) for gf in scene.gaussian_frames],dim=0))
# rgb
features_dc, features_rest = color2feat(rgb)
f_dc = features_dc.flatten(start_dim=1).detach().cpu().numpy()
f_rest = features_rest.flatten(start_dim=1).detach().cpu().numpy()
normals = np.zeros_like(xyz)
# save
dtype_full = [(attribute, 'f4') for attribute in construct_list_of_attributes(features_dc,features_rest,scale,rotation)]
elements = np.empty(xyz.shape[0], dtype=dtype_full)
attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1)
elements[:] = list(map(tuple, attributes))
el = PlyElement.describe(elements, 'vertex')
PlyData([el]).write(path) |