File size: 11,193 Bytes
c5d83eb ee37fa5 c5d83eb 6a56d7d c5d83eb e898efc c5d83eb ee37fa5 79a6fc4 c5d83eb ee37fa5 f17dee3 ee37fa5 c5d83eb ee37fa5 c5d83eb ee37fa5 f17dee3 0e946aa 3109162 f17dee3 ee37fa5 c5d83eb ee37fa5 c5d83eb f17dee3 c5d83eb ee37fa5 3109162 6a56d7d 3109162 ee37fa5 6a56d7d ee37fa5 14e865e 6a56d7d ee37fa5 931a43a 0e946aa 931a43a 0e946aa 931a43a 0e946aa 931a43a 0e946aa 931a43a 3b9499b c5d83eb 3b9499b 0e946aa 68b945f c5d83eb 91f1c8a c5d83eb 91f1c8a 2f1260e c5d83eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
---
title: FairEval
tags:
- evaluate
- metric
description: "Fair Evaluation for Squence labeling"
sdk: gradio
sdk_version: 3.0.2
app_file: app.py
pinned: false
---
# Fair Evaluation for Sequence Labeling
## Metric Description
The traditional evaluation of NLP labeled spans with precision, recall, and F1-score leads to double penalties for
close-to-correct annotations. As [Manning (2006)](https://nlpers.blogspot.com/2006/08/doing-named-entity-recognition-dont.html)
argues in an article about named entity recognition, this can lead to undesirable effects when systems are optimized for these traditional metrics.
To address these issues, this metric provides an implementation of FairEval, proposed by [Ortmann (2022)](https://aclanthology.org/2022.lrec-1.150.pdf).
## How to Use
FairEval outputs the error count (TP, FP, etc.) and resulting scores (Precision, Recall and F1) from a reference list of
spans compared against a predicted one. The user can choose to see traditional or fair error counts and scores by
switching the argument **mode**.
The user can also choose to see the metric parameters (TP, FP...) as absolute count, as a percentage with respect to the
total number of errors or with respect to the total number of ground truth entities through the argument **error_format**.
The minimal example is:
```python
faireval = evaluate.load("hpi-dhc/FairEval")
pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']]
ref = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O', 'B-PER', 'I-PER', 'O']]
results = faireval.compute(predictions=pred, references=ref)
```
### Inputs
FairEval handles input annotations as seqeval. The supported formats are IOB1, IOB2, IOE1, IOE2 and IOBES.
Predicted sentences must have the same number of tokens as the references.
- **predictions** *(list)*: a list of lists of predicted labels, i.e. estimated targets as returned by a tagger.
- **references** *(list)*: list of ground truth reference labels.
The optional arguments are:
- **mode** *(str)*: 'fair', 'traditional' ot 'weighted. Controls the desired output. The default value is 'fair'.
- 'traditional': equivalent to seqeval's 'strict' mode. Bear in mind that the default mode for seqeval is 'relaxed', which does not match with any of faireval modes.
- 'fair': default fair score calculation. Fair will also show traditional scores for comparison.
- 'weighted': custom score calculation with the weights passed. Weighted will also show traditional scores for comparison.
- **weights** *(dict)*: dictionary with the weight of each error for the custom score calculation.
- **error_format** *(str)*: 'count', 'error_ratio' or 'entity_ratio'. Controls the desired output for TP, FP, BE, LE, etc. Default value is 'count'.
- 'count': absolute count of each parameter.
- 'error_ratio': precentage with respect to the total errors that each parameter represents.
- 'entity_ratio': precentage with respect to the total number of ground truth entites that each parameter represents.
- **zero_division** *(str)*: which value to substitute as a metric value when encountering zero division. Should be one of [0,1,"warn"]. "warn" acts as 0, but the warning is raised.
- **suffix** *(boolean)*: True if the IOB tag is a suffix (after type) instead of a prefix (before type), False otherwise. The default value is False, i.e. the IOB tag is a prefix (before type).
- **scheme** *(str)*: the target tagging scheme, which can be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU]. The default value is None.
### Output Values
A dictionary with:
- Overall error parameter count (or ratio) and resulting scores.
- A nested dictionary per label with its respective error parameter count (or ratio) and resulting scores
If mode is 'traditional', the error parameters shown are the classical TP, FP and FN. If mode is 'fair' or 'weighted',
TP remain the same, FP and FN are shown as per the fair definition and additional errors BE, LE and LBE are shown.
### Examples
Considering the following input annotated sentences:
```python
>>> r1 = ['O', 'O', 'B-PER', 'I-PER', 'O', 'B-PER']
>>> p1 = ['O', 'O', 'B-PER', 'I-PER', 'O', 'O' ] #1FN
>>>
>>> r2 = ['O', 'B-INT', 'B-OUT']
>>> p2 = ['B-INT', 'I-INT', 'B-OUT'] #1BE
>>>
>>> r3 = ['B-INT', 'I-INT', 'B-OUT']
>>> p3 = ['B-OUT', 'O', 'B-PER'] #1LBE, 1LE
>>>
>>> y_true = [r1, r2, r3]
>>> y_pred = [p1, p2, p3]
```
The output for different modes and error_formats is:
```python
>>> faireval.compute(predictions=y_pred, references=y_true, mode='fair', error_format='count')
{"PER": {"precision": 1.0, "recall": 0.5, "f1": 0.6666,
"trad_prec": 0.5, "trad_rec": 0.5, "trad_f1": 0.5,
"TP": 1, "FP": 0.0, "FN": 1.0, "LE": 0.0, "BE": 0.0, "LBE": 0.0},
"INT": {"precision": 0.0, "recall": 0.0, "f1": 0.0,
"trad_prec": 0.0, "trad_rec": 0.0, "trad_f1": 0.0,
"TP": 0, "FP": 0.0, "FN": 0.0, "LE": 0.0, "BE": 1.0, "LBE": 1.0},
"OUT": {"precision": 0.6666, "recall": 0.6666, "f1": 0.666,
"trad_prec": 0.5, "trad_rec": 0.5, "trad_f1": 0.5,
"TP": 1, "FP": 0.0, "FN": 0.0, "LE": 1.0, "BE": 0.0, "LBE": 0.0},
"overall_precision": 0.5714, "overall_recall": 0.4444, "overall_f1": 0.5,
"overall_trad_prec": 0.4, "overall_trad_rec": 0.3333, "overall_trad_f1": 0.3636,
"TP": 2, "FP": 0.0, "FN": 1.0, "LE": 1.0, "BE": 1.0, "LBE": 1.0}
```
```python
>>> faireval.compute(predictions=y_pred, references=y_true, mode='traditional', error_format='count')
{"PER": {"precision": 0.5, "recall": 0.5, "f1": 0.5,
"TP": 1, "FP": 1.0, "FN": 1.0},
"INT": {"precision": 0.0, "recall": 0.0, "f1": 0.0,
"TP": 0, "FP": 1.0, "FN": 2.0},
"OUT": {"precision": 0.5, "recall": 0.5, "f1": 0.5,
"TP": 1, "FP": 1.0, "FN": 1.0},
"overall_precision": 0.4, "overall_recall": 0.3333, "overall_f1": 0.3636,
"TP": 2, "FP": 3.0, "FN": 4.0}
```
```python
>>> faireval.compute(predictions=y_pred, references=y_true, mode='traditional', error_format='error_ratio')
{"PER": {"precision": 0.5, "recall": 0.5, "f1": 0.5,
"TP": 1, "FP": 0.1428, "FN": 0.1428},
"INT": {"precision": 0.0, "recall": 0.0, "f1": 0.0,
"TP": 0, "FP": 0.1428, "FN": 0.2857},
"OUT": {"precision": 0.5, "recall": 0.5, "f1": 0.5,
"TP": 1, "FP": 0.1428, "FN": 0.1428},
"overall_precision": 0.4, "overall_recall": 0.3333, "overall_f1": 0.3636,
"TP": 2, "FP": 0.4285, "FN": 0.5714}
```
### Values from Popular Papers
#### CoNLL2003
Computing the evaluation metrics on the results from [this model](https://huggingface.co/elastic/distilbert-base-uncased-finetuned-conll03-english)
run on the test split of [CoNLL2003 dataset](https://huggingface.co/datasets/conll2003), we obtain the following F1-Scores:
| F1 Scores | overall | location | miscelaneous | organization | person |
|-----------------|--------:|---------:|-------------:|-------------:|-------:|
| fair | 0,94 | 0,96 | 0,85 | 0,92 | 0,97 |
| traditional | 0,90 | 0,92 | 0,79 | 0,87 | 0,96 |
| seqeval strict | 0,90 | 0,92 | 0,79 | 0,87 | 0,96 |
| seqeval relaxed | 0,90 | 0,92 | 0,78 | 0,87 | 0,96 |
With error count (traditional on the left and fair on the right):
| | overall | | location | | miscelaneous | | organization | | person | |
|-----|--------:|-----:|---------:|-----:|-------------:|----:|-------------:|-----:|-------:|-----:|
| TP | 5104 | 5104 | 1545 | 1545 | 561 | 561 | 1452 | 1452 | 1546 | 1546 |
| FP | 534 | 126 | 128 | 20 | 154 | 48 | 208 | 47 | 44 | 11 |
| FN | 544 | 124 | 123 | 13 | 141 | 47 | 209 | 47 | 71 | 17 |
| LE | | 219 | | 62 | | 41 | | 73 | | 43 |
| BE | | 126 | | 16 | | 46 | | 53 | | 11 |
| LBE | | 87 | | 32 | | 13 | | 41 | | 1 |
#### WNUT-17
Computing the evaluation metrics on the results from [this model](https://huggingface.co/muhtasham/bert-small-finetuned-wnut17-ner)
run on the test split of [WNUT-17 dataset](https://huggingface.co/datasets/wnut_17), we obtain the following F1-Scores:
| | overall | location | group | person | creative work | corporation | product |
|-----------------|--------:|---------:|-------:|-------:|--------------:|------------:|--------:|
| fair | 0,37 | 0,58 | 0,02 | 0,58 | 0,0 | 0,03 | 0,0 |
| traditional | 0,35 | 0,53 | 0,02 | 0,55 | 0,0 | 0,02 | 0,0 |
| seqeval strict | 0,35 | 0,53 | 0,02 | 0,55 | 0,0 | 0,02 | 0,0 |
| seqeval relaxed | 0,34 | 0,49 | 0,02 | 0,55 | 0,0 | 0,02 | 0,0 |
With error count:
| | overall | | location | | group | | person | | creative work | | corporation | | product | |
|-----|--------:|----:|---------:|---:|------:|----:|-------:|----:|--------------:|----:|------------:|---:|--------:|----:|
| TP | 255 | 255 | 67 | 67 | 2 | 2 | 185 | 185 | 0 | 0 | 1 | 1 | 0 | 0 |
| FP | 135 | 31 | 38 | 10 | 20 | 3 | 60 | 16 | 0 | 0 | 17 | 2 | 0 | 0 |
| FN | 824 | 725 | 83 | 71 | 163 | 135 | 244 | 233 | 142 | 120 | 65 | 54 | 127 | 112 |
| LE | | 47 | | 4 | | 18 | | 2 | | 6 | | 7 | | 10 |
| BE | | 30 | | 10 | | 4 | | 13 | | 0 | | 3 | | 0 |
| LBE | | 29 | | 1 | | 6 | | 0 | | 16 | | 1 | | 5 |
## Limitations and Bias
The metric is restricted to the input schemes admitted by seqeval. For example, the application does not support numerical
label inputs (odd for Beginning, even for Inside and zero for Outside).
The choice of custom weights for wheighted evaluation is subjective to the user. Neither weighted nor fair evaluations
can be compared to traditional span-based metrics used in other pairs of datasets-models.
## Citation
Ortmann, Katrin. 2022. Fine-Grained Error Analysis and Fair Evaluation of Labeled Spans. In *Proceedings of the Language Resources and Evaluation Conference (LREC)*, Marseille, France, pages 1400–1407. [PDF](https://aclanthology.org/2022.lrec-1.150.pdf)
```bibtex
@inproceedings{ortmann2022,
title = {Fine-Grained Error Analysis and Fair Evaluation of Labeled Spans},
author = {Katrin Ortmann},
url = {https://aclanthology.org/2022.lrec-1.150},
year = {2022},
date = {2022-06-21},
booktitle = {Proceedings of the Language Resources and Evaluation Conference (LREC)},
pages = {1400-1407},
publisher = {European Language Resources Association},
address = {Marseille, France},
pubstate = {published},
type = {inproceedings}
}
``` |