File size: 6,651 Bytes
f72975d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b1b4c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f72975d
cd8c3af
 
 
8b1b4c7
 
695fb8b
 
 
 
 
8b1b4c7
 
695fb8b
 
 
87cdfd2
8b1b4c7
 
695fb8b
 
87cdfd2
695fb8b
8b1b4c7
 
695fb8b
 
cd8c3af
8b1b4c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# import numpy as np
# import cv2
# import tensorflow as tf
# from tensorflow.keras.preprocessing.image import img_to_array, load_img
# import matplotlib.pyplot as plt
# from matplotlib.colors import LinearSegmentedColormap

# def preprocess_image(img_path, target_size):
#     img = load_img(img_path, target_size=target_size)
#     img = img_to_array(img)
#     img = np.expand_dims(img, axis=0)
#     img = img / 255.0  # Normalize
#     return img

# def make_gradcam_heatmap(model, img_tensor, last_conv_layer_name, classifier_layer_names):
#     grad_model = tf.keras.models.Model(
#         [model.inputs], [model.get_layer(last_conv_layer_name).output, model.output]
#     )
#     with tf.GradientTape() as tape:
#         conv_outputs, predictions = grad_model(img_tensor)
#         loss = predictions[:, 1]  # Targeting class 1 for pneumonia

#     grads = tape.gradient(loss, conv_outputs)
#     pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))

#     conv_outputs = conv_outputs[0]
#     heatmap = conv_outputs @ pooled_grads[..., tf.newaxis]
#     heatmap = tf.squeeze(heatmap)
#     heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
#     heatmap = tf.where(tf.math.is_nan(heatmap), tf.zeros_like(heatmap), heatmap)
#     return heatmap.numpy()

# def create_custom_colormap():
#     colors = ['blue', 'green', 'yellow', 'red']
#     n_bins = 256
#     cmap = LinearSegmentedColormap.from_list('custom', colors, N=n_bins)
#     return cmap

# def apply_custom_colormap(heatmap, cmap):
#     colored_heatmap = cmap(heatmap)
#     colored_heatmap = np.uint8(colored_heatmap * 255)
#     return colored_heatmap

# def enhance_heatmap(heatmap, gamma=0.7, percentile=99):
#     heatmap = np.power(heatmap, gamma)
#     heatmap = heatmap / np.percentile(heatmap, percentile)
#     heatmap = np.clip(heatmap, 0, 1)
#     return heatmap

# def generate_and_merge_heatmaps(img_path, vgg_model, efficientnet_model, densenet_model, img_size=(224, 224), output_size=(5, 5)):
#     img_tensor = preprocess_image(img_path, img_size)

#     vgg_heatmap = make_gradcam_heatmap(vgg_model, img_tensor, 'block5_conv4', ['flatten', 'dense'])
#     efficientnet_heatmap = make_gradcam_heatmap(efficientnet_model, img_tensor, 'top_conv', ['flatten', 'dense'])
#     densenet_heatmap = make_gradcam_heatmap(densenet_model, img_tensor, 'conv5_block16_concat', ['flatten', 'dense'])

#     vgg_heatmap_resized = cv2.resize(vgg_heatmap, img_size)
#     efficientnet_heatmap_resized = cv2.resize(efficientnet_heatmap, img_size)
#     densenet_heatmap_resized = cv2.resize(densenet_heatmap, img_size)

#     merged_heatmap = (vgg_heatmap_resized + efficientnet_heatmap_resized + densenet_heatmap_resized) / 3.0
#     enhanced_heatmap = enhance_heatmap(merged_heatmap)
#     custom_cmap = create_custom_colormap()
#     colored_heatmap = apply_custom_colormap(enhanced_heatmap, custom_cmap)

#     img = cv2.imread(img_path)
#     img = cv2.resize(img, img_size)
#     img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

#     superimposed_img = cv2.addWeighted(img, 0.6, colored_heatmap[:, :, :3], 0.4, 0)
#     return superimposed_img








# import numpy as np
# import cv2
# import tensorflow as tf
# from tensorflow.keras.preprocessing.image import img_to_array, load_img
# from matplotlib.colors import LinearSegmentedColormap

# def preprocess_image(img_path, target_size):
#     img = load_img(img_path, target_size=target_size)
#     img = img_to_array(img)
#     img = np.expand_dims(img, axis=0)
#     img = img / 255.0
#     return img

# def make_gradcam_heatmap(model, img_tensor):
#     grad_model = tf.keras.models.Model([model.input], [model.output])

#     with tf.GradientTape() as tape:
#         conv_outputs = model(img_tensor)
#         loss = conv_outputs[:, 1]  # class index 1 = pneumonia

#     grads = tape.gradient(loss, conv_outputs)
#     pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))

#     conv_outputs = conv_outputs[0]
#     heatmap = conv_outputs @ pooled_grads[..., tf.newaxis]
#     heatmap = tf.squeeze(heatmap)
#     heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
#     heatmap = tf.where(tf.math.is_nan(heatmap), tf.zeros_like(heatmap), heatmap)
#     return heatmap.numpy()

# def create_custom_colormap():
#     colors = ['blue', 'green', 'yellow', 'red']
#     cmap = LinearSegmentedColormap.from_list('custom', colors, N=256)
#     return cmap

# def apply_custom_colormap(heatmap, cmap):
#     colored_heatmap = cmap(heatmap)
#     return np.uint8(colored_heatmap * 255)

# def enhance_heatmap(heatmap, gamma=0.7, percentile=99):
#     heatmap = np.power(heatmap, gamma)
#     heatmap = heatmap / np.percentile(heatmap, percentile)
#     return np.clip(heatmap, 0, 1)

# def generate_and_merge_heatmaps(img_path, vgg_model, efficientnet_model, densenet_model, img_size=(224, 224)):
#     img_tensor = preprocess_image(img_path, img_size)

#     vgg_heatmap = make_gradcam_heatmap(vgg_model, img_tensor)
#     efficientnet_heatmap = make_gradcam_heatmap(efficientnet_model, img_tensor)
#     densenet_heatmap = make_gradcam_heatmap(densenet_model, img_tensor)

#     vgg_heatmap = cv2.resize(vgg_heatmap, img_size)
#     efficientnet_heatmap = cv2.resize(efficientnet_heatmap, img_size)
#     densenet_heatmap = cv2.resize(densenet_heatmap, img_size)

#     merged = (vgg_heatmap + efficientnet_heatmap + densenet_heatmap) / 3.0
#     enhanced = enhance_heatmap(merged)
#     colored = apply_custom_colormap(enhanced, create_custom_colormap())

#     original = cv2.imread(img_path)
#     original = cv2.resize(original, img_size)
#     original = cv2.cvtColor(original, cv2.COLOR_BGR2RGB)

#     superimposed_img = cv2.addWeighted(original, 0.6, colored[:, :, :3], 0.4, 0)
#     return superimposed_img





import numpy as np
from tf_explain.core.grad_cam import GradCAM
import tensorflow as tf
from tensorflow.keras.preprocessing.image import img_to_array
from PIL import Image

def generate_heatmap_tf_explain(image_pil, model, class_index, layer_name="block5_conv4"):
    from tf_explain.core.grad_cam import GradCAM

    # Preprocess image
    img_array = np.array(image_pil.resize((224, 224))) / 255.0
    img_array = np.expand_dims(img_array, axis=0)

    # Reconstruct model to include target layer
    from tensorflow.keras.models import Model
    model_for_explanation = Model(inputs=model.input, outputs=model.output)

    explainer = GradCAM()
    explanation = explainer.explain(
        validation_data=(img_array, None),
        model=model_for_explanation,
        class_index=class_index,
        layer_name=layer_name
    )

    return Image.fromarray(explanation)