File size: 7,541 Bytes
c295391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import torch
import numpy as np
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.nn.functional as F
import matplotlib.pyplot as plt
def pca_show(feats):
    feats = feats.cpu().detach()
    B, C, H, W = feats.shape
    n_components = 3
    from sklearn.decomposition import PCA
    pca = PCA(n_components=n_components)      
    feats = F.interpolate(feats, size=(128, 128), mode='bilinear', align_corners=False)  
    features = feats[0, :, :, :].squeeze().reshape(C,-1).permute(1,0).cpu()
    pca.fit(features)
    pca_features = pca.transform(features)
    pca_features = (pca_features - pca_features.min()) / (pca_features.max() - pca_features.min())
    pca_features = pca_features * 255
    pca_features = pca_features.reshape(128, 128, n_components).astype(np.uint8)
    plt.imshow(pca_features)


def loadmodel(model, filename, strict=True, remove_prefix=False):
    if os.path.exists(filename):
        params = torch.load('%s' % filename)
        if remove_prefix:
            new_params = {k.replace('module.', ''): v for k, v in params.items()}
            model.load_state_dict(new_params,strict=strict)
            print("prefix successfully removed")
        else:
            model.load_state_dict(params,strict=strict)
        print('Load %s' % filename)
    else:
        print('Model Not Found')
    return model

def loadoptimizer(optimizer, filename):
    if os.path.exists(filename):
        params = torch.load('%s' % filename)
        optimizer.load_state_dict(params)
        print('Load %s' % filename)
    return optimizer

def loadscheduler(scheduler, filename):
    if os.path.exists(filename):
        params = torch.load('%s' % filename)
        scheduler.load_state_dict(params)
        print('Load %s' % filename)
    else:
        print('Scheduler Not Found')
    return scheduler

def savemodel(model, filename):
    print('Save %s' % filename)
    torch.save(model.state_dict(), filename)

def saveoptimizer(optimizer, filename):
    print('Save %s' % filename)
    torch.save(optimizer.state_dict(), filename)

def savescheduler(scheduler, filename):
    print('Save %s' % filename)
    torch.save(scheduler.state_dict(), filename)

def optimizer_setup_Adam(net, lr = 0.0001, init=True, step_size=3, stype='step'):
    print(f'Optimizer (Adam) lr={lr}')
    if init==True:
        net.init_weights()
    net = torch.nn.DataParallel(net)
    optim_params = [{'params': net.parameters(), 'lr': lr},] # confirmed
    optimizer = torch.optim.Adam(optim_params, betas=(0.9, 0.999), weight_decay=0)
    if stype == 'cos':
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 30, eta_min=0, last_epoch=-1)
        print('Cosine aneealing learning late scheduler')
    if stype == 'step':
        scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=0.8)
        print(f'Step late scheduler x0.8 decay every {step_size}')
    return net, optimizer, scheduler

def optimizer_setup_SGD(net, lr = 0.01, momentum= 0.9, init=True):
    print(f'Optimizer (SGD with momentum) lr={lr}')
    if init==True:
        net.init_weights()
    net = torch.nn.DataParallel(net)
    optim_params = [{'params': net.parameters(), 'lr': lr},] # confirmed
    return net, torch.optim.SGD(optim_params, momentum=momentum, weight_decay=1e-4, nesterov=True)

def optimizer_setup_AdamW(net, lr = 0.001, eps=1.0e-8, step_size = 20, init=True, stype='step', use_data_parallel=False):
    print(f'Optimizer (AdamW) lr={lr}')
    if init==True:
        net.init_weights()
    if use_data_parallel:
        net = torch.nn.DataParallel(net)
    optim_params = [{'params': net.parameters(), 'lr': lr},] # confirmed
    optimizer = torch.optim.AdamW(optim_params, betas=(0.9, 0.999), eps=eps, weight_decay=0.01)
        
    if stype=='cos':
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 30, eta_min=0, last_epoch=-1)
        print('Cosine aneealing learning late scheduler')
    if stype == 'step':
        scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=0.8)
        print(f'Step late scheduler x0.8 decay every {step_size}')
    return net, optimizer, scheduler

def mode_change(net, Training):
    if Training == True:
        for param in net.parameters():
            param.requires_grad = True
        net.train()
    if Training == False:
        for param in net.parameters():
            param.requires_grad = False
        net.eval()


def get_n_params(model):
    pp=0
    for p in list(model.parameters()):
        nn=1
        for s in list(p.size()):
            nn = nn*s
        pp += nn
    return pp

def loadCheckpoint(path, model, cuda=True):
    if cuda:
        checkpoint = torch.load(path)
    else:
        checkpoint = torch.load(path, map_location=lambda storage, loc: storage)
    model.load_state_dict(checkpoint['state_dict'])

def saveCheckpoint(save_path, epoch=-1, model=None, optimizer=None, records=None, args=None):
    state   = {'state_dict': model.state_dict(), 'model': args.model}
    records = {'epoch': epoch, 'optimizer':optimizer.state_dict(), 'records': records,
            'args': args}
    torch.save(state, os.path.join(save_path, 'checkp_%d.pth.tar' % (epoch)))
    torch.save(records, os.path.join(save_path, 'checkp_%d_rec.pth.tar' % (epoch)))



def masking(img, mask):
    # img [B, C, H, W]
    # mask [B, 1, H, W] [0,1]
    img_masked = img * mask.expand((-1, img.shape[1], -1, -1))
    return img_masked

def print_model_parameters(model):
    model_parameters = filter(lambda p: p.requires_grad, model.parameters())
    params = sum([np.prod(p.size()) for p in model_parameters])


    print('# parameters: %d' % params)


def angular_error(x1, x2, mask = None): # tensor [B, 3, H, W]

    if mask is not None:
        dot = torch.sum(x1 * x2 * mask, dim=1, keepdim=True)
        dot = torch.max(torch.min(dot, torch.Tensor([1.0-1.0e-12])), torch.Tensor([-1.0+1.0e-12]))
        emap = torch.abs(180 * torch.acos(dot)/np.pi) * mask
        mae = torch.sum(emap) / torch.sum(mask)
        return mae, emap
    if mask is None:
        dot = torch.sum(x1 * x2, dim=1, keepdim=True)
        dot = torch.max(torch.min(dot, torch.Tensor([1.0-1.0e-12])), torch.Tensor([-1.0+1.0e-12]))
        error = torch.abs(180 * torch.acos(dot)/np.pi)
        return error

def write_errors(filepath, error, trainid, numimg, objname = []):
    dt_now = datetime.datetime.now()
    print(filepath)

    if len(objname) > 0:
        with open(filepath, 'a') as f:
            f.write('%s %03d %s %02d %.2f\n' % (dt_now, numimg, objname, trainid, error))
    else:
        with open(filepath, 'a') as f:
            f.write('%s %03d %02d %.2f\n' % (dt_now, numimg, trainid, error))


def save_nparray_as_hdf5(self, a, filename):
    h5f = h5py.File(filename, 'w')
    h5f.create_dataset('dataset_1', data=a)
    h5f.close()

def freeze_params(net):
    for param in net.parameters():
        param.requires_grad = False

def unfreeze_params(net):
    for param in net.parameters():
        param.requires_grad = True

def make_index_list(maxNumImages, numImageList):
    index = np.zeros((len(numImageList) * maxNumImages), np.int32)
    for k in range(len(numImageList)):
        index[maxNumImages*k:maxNumImages*k+numImageList[k]] = 1
    return index