File size: 1,536 Bytes
fb345a4
09665bb
53bac69
fb345a4
53bac69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09665bb
ae71aec
 
 
 
 
 
 
 
 
 
53bac69
 
ae71aec
53bac69
0460230
53bac69
 
0460230
53bac69
 
cd8bbc0
53bac69
 
ae71aec
 
 
53bac69
ae71aec
0460230
ae71aec
 
53bac69
ae71aec
09665bb
53bac69
ae71aec
 
53bac69
 
ae71aec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import gradio as gr
from transformers import pipeline
import time

# Show loading status
print("Loading model...")
start_time = time.time()

# Initialize model with error handling
try:
    model = pipeline(
        "text2text-generation",
        model="humarin/chatgpt_paraphraser_on_T5_base",
        device="cpu"
    )
    load_time = time.time() - start_time
    print(f"Model loaded successfully in {load_time:.2f} seconds")
except Exception as e:
    print(f"Model loading failed: {str(e)}")
    raise

def paraphrase(text):
    try:
        output = model(
            f"paraphrase: {text}",
            max_length=128,
            num_beams=5,
            temperature=0.7,
        )
        return output[0]["generated_text"]
    except Exception as e:
        print(f"Generation error: {str(e)}")
        return text

# Create interface with modern Gradio API
with gr.Blocks() as demo:
    gr.Markdown("## T5 Paraphraser")
    
    with gr.Row():
        input_text = gr.Textbox(label="Input Text", lines=3)
        output_text = gr.Textbox(label="Paraphrased Text", lines=3)
    
    submit_btn = gr.Button("Paraphrase")
    submit_btn.click(
        fn=paraphrase,
        inputs=input_text,
        outputs=output_text,
        api_name="predict"  # Standard endpoint name
    )
    
    gr.Examples(
        examples=["The quick brown fox jumps over the lazy dog."],
        inputs=input_text
    )

# Launch configuration for current Gradio
demo.launch(
    server_name="0.0.0.0",
    server_port=7860,
    show_api=True
)