Spaces:
Runtime error
Runtime error
File size: 16,372 Bytes
b13bb81 9a0ea4b d11c8e5 9a0ea4b b13bb81 d11c8e5 9a0ea4b d11c8e5 9a0ea4b d11c8e5 9a0ea4b b13bb81 9a0ea4b d11c8e5 9a0ea4b d11c8e5 9a0ea4b d11c8e5 9a0ea4b d11c8e5 9a0ea4b d11c8e5 9a0ea4b d11c8e5 9a0ea4b d11c8e5 9a0ea4b d11c8e5 9a0ea4b d11c8e5 9a0ea4b d11c8e5 9a0ea4b d11c8e5 9a0ea4b d11c8e5 9a0ea4b b13bb81 9a0ea4b d11c8e5 9a0ea4b d11c8e5 9a0ea4b b13bb81 9a0ea4b d11c8e5 9a0ea4b b13bb81 d11c8e5 9a0ea4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
import sys
import os
os.system("git clone https://github.com/hongfz16/EVA3D.git")
sys.path.append("EVA3D")
os.system("cp -r EVA3D/assets .")
os.system(f"{sys.executable} -m pip install -U fvcore plotly")
import torch
pyt_version_str=torch.__version__.split("+")[0].replace(".", "")
version_str="".join([
f"py3{sys.version_info.minor}_cu",
torch.version.cuda.replace(".",""),
f"_pyt{pyt_version_str}"
])
os.system(f"{sys.executable} -m pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/{version_str}/download.html")
import os
import html
import glob
import uuid
import hashlib
import requests
from tqdm import tqdm
from pdb import set_trace as st
from download_models import download_file
eva3d_deepfashion_model = dict(file_url='https://drive.google.com/uc?id=1SYPjxnHz3XPRhTarx_Lw8SG_iz16QUMU',
alt_url='', file_size=160393221, file_md5='d0fae86edf76c52e94223bd3f39b2157',
file_path='checkpoint/512x256_deepfashion/volume_renderer/models_0420000.pt',)
smpl_model = dict(file_url='https://drive.google.com/uc?id={}'.format(os.environ['smpl_link']),
alt_url='', file_size=39001280, file_md5='65dc7f162f3ef21a38637663c57e14a7',
file_path='smpl_models/smpl/SMPL_NEUTRAL.pkl',)
from huggingface_hub import hf_hub_download
def download_pretrained_models():
print('Downloading EVA3D model pretrained on DeepFashion.')
# with requests.Session() as session:
# try:
# download_file(session, eva3d_deepfashion_model)
# except:
# print('Google Drive download failed.\n' \
# 'Trying do download from alternate server')
# download_file(session, eva3d_deepfashion_model, use_alt_url=True)
eva3d_ckpt = hf_hub_download(repo_id="hongfz16/EVA3D", filename="models_0420000.pt", token=os.environ['hf_token'])
os.system("mkdir -p checkpoint/512x256_deepfashion/volume_renderer")
os.system("mkdir -p smpl_models/smpl")
os.system(f"cp {eva3d_ckpt} checkpoint/512x256_deepfashion/volume_renderer/models_0420000.pt")
print('Downloading SMPL model.')
# with requests.Session() as session:
# try:
# download_file(session, smpl_model)
# except:
# print('Google Drive download failed.\n' \
# 'Trying do download from alternate server')
# download_file(session, smpl_model, use_alt_url=True)
smpl_pkl = hf_hub_download(repo_id="hongfz16/EVA3D", filename="SMPL_NEUTRAL.pkl", token=os.environ['hf_token'])
os.system(f"cp {smpl_pkl} smpl_models/smpl/SMPL_NEUTRAL.pkl")
download_pretrained_models()
import os
import torch
import trimesh
import imageio
import pickle
import numpy as np
from munch import *
from PIL import Image
from tqdm import tqdm
from torch.nn import functional as F
from torch.utils import data
from torchvision import utils
from torchvision import transforms
from skimage.measure import marching_cubes
from scipy.spatial import Delaunay
from scipy.spatial.transform import Rotation as R
from options import BaseOptions
from model import VoxelHumanGenerator as Generator
from dataset import DeepFashionDataset, DemoDataset
from utils import (
generate_camera_params,
align_volume,
extract_mesh_with_marching_cubes,
xyz2mesh,
requires_grad,
create_mesh_renderer,
create_cameras
)
from pytorch3d.io import load_objs_as_meshes, load_obj
from pytorch3d.structures import Meshes
from pytorch3d.renderer import (
FoVPerspectiveCameras, look_at_view_transform, look_at_rotation,
RasterizationSettings, MeshRenderer, MeshRasterizer, BlendParams,
SoftSilhouetteShader, HardPhongShader, PointLights, TexturesVertex,
)
torch.random.manual_seed(8888)
import random
random.seed(8888)
panning_angle = np.pi / 3
def sample_latent(opt, device):
return
def generate_rgb(opt, g_ema, device, mean_latent, sample_z, sample_trans, sample_beta, sample_theta, sample_cam_extrinsics, sample_focals):
requires_grad(g_ema, False)
g_ema.is_train = False
g_ema.train_renderer = False
img_list = []
for k in range(3):
if k == 0:
delta = R.from_rotvec(np.pi/8 * np.array([0, 1, 0]))
elif k == 2:
delta = R.from_rotvec(-np.pi/8 * np.array([0, 1, 0]))
else:
delta = R.from_rotvec(0 * np.array([0, 1, 0]))
r = R.from_rotvec(sample_theta[0, :3].cpu().numpy())
new_r = delta * r
new_sample_theta = sample_theta.clone()
new_sample_theta[0, :3] = torch.from_numpy(new_r.as_rotvec()).to(device)
with torch.no_grad():
j = 0
chunk = 1
out = g_ema([sample_z[j:j+chunk]],
sample_cam_extrinsics[j:j+chunk],
sample_focals[j:j+chunk],
sample_beta[j:j+chunk],
new_sample_theta[j:j+chunk],
sample_trans[j:j+chunk],
truncation=opt.truncation_ratio,
truncation_latent=mean_latent,
return_eikonal=False,
return_normal=False,
return_mask=False,
fix_viewdir=True)
rgb_images_thumbs = out[1].detach().cpu()[..., :3].permute(0, 3, 1, 2)
g_ema.zero_grad()
img_list.append(rgb_images_thumbs)
utils.save_image(torch.cat(img_list, 0),
os.path.join(opt.results_dst_dir, 'images_paper_fig','{}.png'.format(str(0).zfill(7))),
nrow=3,
normalize=True,
range=(-1, 1),
padding=0,)
def generate_mesh(opt, g_ema, device, mean_latent, sample_z, sample_trans, sample_beta, sample_theta, sample_cam_extrinsics, sample_focals):
latent = g_ema.styles_and_noise_forward(sample_z[:1], None, opt.truncation_ratio,
mean_latent, False)
sdf = g_ema.renderer.marching_cube_posed(latent[0], sample_beta, sample_theta, resolution=350, size=1.4).detach()
marching_cubes_mesh, _, _ = extract_mesh_with_marching_cubes(sdf, level_set=0)
marching_cubes_mesh = trimesh.smoothing.filter_humphrey(marching_cubes_mesh, beta=0.2, iterations=5)
# marching_cubes_mesh_filename = os.path.join(opt.results_dst_dir,'marching_cubes_meshes_posed','sample_{}_marching_cubes_mesh.obj'.format(0))
# with open(marching_cubes_mesh_filename, 'w') as f:
# marching_cubes_mesh.export(f,file_type='obj')
return marching_cubes_mesh
def generate_video(opt, g_ema, device, mean_latent, sample_z, sample_trans, sample_beta, sample_theta, sample_cam_extrinsics, sample_focals):
video_list = []
for k in tqdm(range(120)):
if k < 30:
angle = (panning_angle / 2) * (k / 30)
elif k >= 30 and k < 90:
angle = panning_angle / 2 - panning_angle * ((k - 30) / 60)
else:
angle = -panning_angle / 2 * ((120 - k) / 30)
delta = R.from_rotvec(angle * np.array([0, 1, 0]))
r = R.from_rotvec(sample_theta[0, :3].cpu().numpy())
new_r = delta * r
new_sample_theta = sample_theta.clone()
new_sample_theta[0, :3] = torch.from_numpy(new_r.as_rotvec()).to(device)
with torch.no_grad():
j = 0
chunk = 1
out = g_ema([sample_z[j:j+chunk]],
sample_cam_extrinsics[j:j+chunk],
sample_focals[j:j+chunk],
sample_beta[j:j+chunk],
new_sample_theta[j:j+chunk],
sample_trans[j:j+chunk],
truncation=opt.truncation_ratio,
truncation_latent=mean_latent,
return_eikonal=False,
return_normal=False,
return_mask=False,
fix_viewdir=True)
rgb_images_thumbs = out[1].detach().cpu()[..., :3]
g_ema.zero_grad()
video_list.append((rgb_images_thumbs.numpy() + 1) / 2. * 255. + 0.5)
all_img = np.concatenate(video_list, 0).astype(np.uint8)
imageio.mimwrite(os.path.join(opt.results_dst_dir, 'images_paper_video', 'video_{}.mp4'.format(str(0).zfill(7))), all_img, fps=30, quality=8)
def setup():
device='cuda' if torch.cuda.is_available() else 'cpu'
opt = BaseOptions().parse()
opt.training.batch = 1
opt.training.chunk = 1
opt.experiment.expname = '512x256_deepfashion'
opt.dataset.dataset_path = 'demodataset'
opt.rendering.depth = 5
opt.rendering.width = 128
opt.model.style_dim = 128
opt.model.renderer_spatial_output_dim = [512, 256]
opt.training.no_sphere_init = True
opt.rendering.input_ch_views = 3
opt.rendering.white_bg = True
opt.model.voxhuman_name = 'eva3d_deepfashion'
opt.training.deltasdf = True
opt.rendering.N_samples = 28
opt.experiment.ckpt = '420000'
opt.inference.identities = 1
opt.inference.truncation_ratio = 0.6
opt.model.is_test = True
opt.model.freeze_renderer = False
opt.rendering.no_features_output = True
opt.rendering.offset_sampling = True
opt.rendering.static_viewdirs = True
opt.rendering.force_background = True
opt.rendering.perturb = 0
opt.inference.size = opt.model.size
opt.inference.camera = opt.camera
opt.inference.renderer_output_size = opt.model.renderer_spatial_output_dim
opt.inference.style_dim = opt.model.style_dim
opt.inference.project_noise = opt.model.project_noise
opt.inference.return_xyz = opt.rendering.return_xyz
checkpoints_dir = os.path.join('checkpoint', opt.experiment.expname, 'volume_renderer')
checkpoint_path = os.path.join(checkpoints_dir,
'models_{}.pt'.format(opt.experiment.ckpt.zfill(7)))
# define results directory name
result_model_dir = 'iter_{}'.format(opt.experiment.ckpt.zfill(7))
# create results directory
results_dir_basename = os.path.join(opt.inference.results_dir, opt.experiment.expname)
opt.inference.results_dst_dir = os.path.join(results_dir_basename, result_model_dir)
if opt.inference.fixed_camera_angles:
opt.inference.results_dst_dir = os.path.join(opt.inference.results_dst_dir, 'fixed_angles')
else:
opt.inference.results_dst_dir = os.path.join(opt.inference.results_dst_dir, 'random_angles')
os.makedirs(opt.inference.results_dst_dir, exist_ok=True)
os.makedirs(os.path.join(opt.inference.results_dst_dir, 'images_paper_fig'), exist_ok=True)
os.makedirs(os.path.join(opt.inference.results_dst_dir, 'images_paper_video'), exist_ok=True)
os.makedirs(os.path.join(opt.inference.results_dst_dir, 'marching_cubes_meshes_posed'), exist_ok=True)
checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage)
# load generation model
g_ema = Generator(opt.model, opt.rendering, full_pipeline=False, voxhuman_name=opt.model.voxhuman_name).to(device)
pretrained_weights_dict = checkpoint["g_ema"]
model_dict = g_ema.state_dict()
for k, v in pretrained_weights_dict.items():
if v.size() == model_dict[k].size():
model_dict[k] = v
else:
print(k)
g_ema.load_state_dict(model_dict)
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)])
if 'deepfashion' in opt.dataset.dataset_path:
file_list = '/mnt/lustre/fzhong/smplify-x/deepfashion_train_list/deepfashion_train_list_MAN.txt'
elif '20w_fashion' in opt.dataset.dataset_path:
file_list = '/mnt/lustre/fzhong/mmhuman3d/20w_fashion_result/nondress_flist.txt'
else:
file_list = None
if file_list:
dataset = DeepFashionDataset(opt.dataset.dataset_path, transform, opt.model.size,
opt.model.renderer_spatial_output_dim, file_list)
else:
dataset = DemoDataset()
# get the mean latent vector for g_ema
if opt.inference.truncation_ratio < 1:
with torch.no_grad():
mean_latent = g_ema.mean_latent(opt.inference.truncation_mean, device)
else:
mean_latent = None
g_ema.renderer.is_train = False
g_ema.renderer.perturb = 0
# generate(opt.inference, dataset, g_ema, device, mean_latent, opt.rendering.render_video)
sample_trans, sample_beta, sample_theta = dataset.sample_smpl_param(1, device, val=False)
sample_cam_extrinsics, sample_focals = dataset.get_camera_extrinsics(1, device, val=False)
torch.randn(1, opt.inference.style_dim, device=device)
return opt.inference, g_ema, device, mean_latent, torch.randn(1, opt.inference.style_dim, device=device), \
sample_trans, sample_beta, sample_theta, sample_cam_extrinsics, sample_focals
import gradio as gr
import plotly.graph_objects as go
from PIL import Image
setup_list = None
def get_video():
global setup_list
if setup_list is None:
setup_list = list(setup())
generate_video(*setup_list)
torch.cuda.empty_cache()
path = 'evaluations/512x256_deepfashion/iter_0420000/random_angles/images_paper_video/video_0000000.mp4'
return path
def get_mesh():
global setup_list
if setup_list is None:
setup_list = list(setup())
setup_list[4] = torch.randn(1, setup_list[0].style_dim, device=setup_list[2])
generate_rgb(*setup_list)
mesh = generate_mesh(*setup_list)
torch.cuda.empty_cache()
x=np.asarray(mesh.vertices).T[0]
y=np.asarray(mesh.vertices).T[1]
z=np.asarray(mesh.vertices).T[2]
i=np.asarray(mesh.faces).T[0]
j=np.asarray(mesh.faces).T[1]
k=np.asarray(mesh.faces).T[2]
fig = go.Figure(go.Mesh3d(x=x, y=y, z=z,
i=i, j=j, k=k,
color="lightpink",
# flatshading=True,
lighting=dict(ambient=0.5,
diffuse=1,
fresnel=4,
specular=0.5,
roughness=0.05,
facenormalsepsilon=0,
vertexnormalsepsilon=0),))
# lightposition=dict(x=100,
# y=100,
# z=1000)))
path='evaluations/512x256_deepfashion/iter_0420000/random_angles/images_paper_fig/0000000.png'
image=Image.open(path)
return fig,image
markdown=f'''
# EVA3D: Compositional 3D Human Generation from 2D Image Collections
Authored by Fangzhou Hong, Zhaoxi Chen, Yushi Lan, Liang Pan, Ziwei Liu
The space demo for the ICLR 2023 Spotlight paper "EVA3D: Compositional 3D Human Generation from 2D Image Collections".
### Useful links:
- [Official Github Repo](https://github.com/hongfz16/EVA3D)
- [Project Page](https://hongfz16.github.io/projects/EVA3D.html)
- [arXiv Link](https://arxiv.org/abs/2210.04888)
Licensed under the S-Lab License.
First use button "Generate RGB & Mesh" to randomly sample a 3D human. Then push button "Generate Video" to generate a panning video of the generated human.
'''
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Markdown(markdown)
with gr.Column():
with gr.Row():
with gr.Column():
image=gr.Image(type="pil",shape=(512,256*3))
with gr.Row():
with gr.Column():
mesh = gr.Plot()
with gr.Column():
video=gr.Video()
# with gr.Row():
# numberoframes = gr.Slider( minimum=30, maximum=250,label='Number Of Frame For Video Generation')
# model_name=gr.Dropdown(choices=["ffhq","afhq"],label="Choose Model Type")
# mesh_type=gr.Dropdown(choices=["DepthMesh","Marching Cubes"],label="Choose Mesh Type")
with gr.Row():
btn = gr.Button(value="Generate RGB & Mesh")
btn_2=gr.Button(value="Generate Video")
btn.click(get_mesh,[],[mesh,image])
btn_2.click(get_video,[],[video])
demo.launch()
|