Spaces:
Runtime error
Runtime error
File size: 32,785 Bytes
e04dce3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 |
import traceback
from pathlib import Path
import gradio as gr
from PIL import Image
from src import backbone, video_mode
from src.core import core_generation_funnel, unload_models, run_makevideo
from src.depthmap_generation import ModelHolder
from src.gradio_args_transport import GradioComponentBundle
from src.misc import *
from src.common_constants import GenerationOptions as go
# Ugly workaround to fix gradio tempfile issue
def ensure_gradio_temp_directory():
try:
import tempfile
path = os.path.join(tempfile.gettempdir(), 'gradio')
if not (os.path.exists(path)):
os.mkdir(path)
except Exception as e:
traceback.print_exc()
ensure_gradio_temp_directory()
def main_ui_panel(is_depth_tab):
inp = GradioComponentBundle()
# TODO: Greater visual separation
with gr.Blocks():
with gr.Row() as cur_option_root:
inp -= 'depthmap_gen_row_0', cur_option_root
inp += go.COMPUTE_DEVICE, gr.Radio(label="Compute on", choices=['GPU', 'CPU'], value='GPU')
# TODO: Should return value instead of index. Maybe Enum should be used?
inp += go.MODEL_TYPE, gr.Dropdown(label="Model",
choices=['res101', 'dpt_beit_large_512 (midas 3.1)',
'dpt_beit_large_384 (midas 3.1)', 'dpt_large_384 (midas 3.0)',
'dpt_hybrid_384 (midas 3.0)',
'midas_v21', 'midas_v21_small',
'zoedepth_n (indoor)', 'zoedepth_k (outdoor)', 'zoedepth_nk',
'Marigold v1', 'Depth Anything', 'Depth Anything v2 Small',
'Depth Anything v2 Base', 'Depth Anything v2 Large'],
value='Depth Anything v2 Base', type="index")
with gr.Box() as cur_option_root:
inp -= 'depthmap_gen_row_1', cur_option_root
with gr.Row():
inp += go.BOOST, gr.Checkbox(label="BOOST",
info="Generate depth map parts in a mosaic fashion - very slow",
value=False)
inp += go.NET_SIZE_MATCH, gr.Checkbox(label="Match net size to input size",
info="Net size affects quality, performance and VRAM usage")
with gr.Row() as options_depend_on_match_size:
inp += go.NET_WIDTH, gr.Slider(minimum=64, maximum=2048, step=64, label='Net width')
inp += go.NET_HEIGHT, gr.Slider(minimum=64, maximum=2048, step=64, label='Net height')
with gr.Row():
inp += go.TILING_MODE, gr.Checkbox(
label='Tiling mode', info='Reduces seams that appear if the depthmap is tiled into a grid'
)
with gr.Box() as cur_option_root:
inp -= 'depthmap_gen_row_2', cur_option_root
with gr.Row():
with gr.Group(): # 50% of width
inp += "save_outputs", gr.Checkbox(label="Save Outputs", value=True)
with gr.Group(): # 50% of width
inp += go.DO_OUTPUT_DEPTH, gr.Checkbox(label="Output DepthMap")
inp += go.OUTPUT_DEPTH_INVERT, gr.Checkbox(label="Invert (black=near, white=far)")
with gr.Row() as options_depend_on_output_depth_1:
inp += go.OUTPUT_DEPTH_COMBINE, gr.Checkbox(
label="Combine input and depthmap into one image")
inp += go.OUTPUT_DEPTH_COMBINE_AXIS, gr.Radio(
label="Combine axis", choices=['Vertical', 'Horizontal'], type="value", visible=False)
with gr.Box() as cur_option_root:
inp -= 'depthmap_gen_row_3', cur_option_root
with gr.Row():
inp += go.CLIPDEPTH, gr.Checkbox(label="Clip and renormalize DepthMap")
inp += go.CLIPDEPTH_MODE,\
gr.Dropdown(label="Mode", choices=['Range', 'Outliers'], type="value", visible=False)
with gr.Row(visible=False) as clip_options_row_1:
inp += go.CLIPDEPTH_FAR, gr.Slider(minimum=0, maximum=1, step=0.001, label='Far clip')
inp += go.CLIPDEPTH_NEAR, gr.Slider(minimum=0, maximum=1, step=0.001, label='Near clip')
with gr.Box():
with gr.Row():
inp += go.GEN_STEREO, gr.Checkbox(label="Generate stereoscopic (3D) image(s)")
with gr.Column(visible=False) as stereo_options:
with gr.Row():
inp += go.STEREO_MODES, gr.CheckboxGroup(
["left-right", "right-left", "top-bottom", "bottom-top", "red-cyan-anaglyph",
"left-only", "only-right", "cyan-red-reverseanaglyph"
][0:8 if backbone.get_opt('depthmap_script_extra_stereomodes', False) else 5], label="Output")
with gr.Row():
inp += go.STEREO_DIVERGENCE, gr.Slider(minimum=0.05, maximum=15.005, step=0.01,
label='Divergence (3D effect)')
inp += go.STEREO_SEPARATION, gr.Slider(minimum=-5.0, maximum=5.0, step=0.01,
label='Separation (moves images apart)')
with gr.Row():
inp += go.STEREO_FILL_ALGO, gr.Dropdown(label="Gap fill technique",
choices=['none', 'naive', 'naive_interpolating', 'polylines_soft',
'polylines_sharp'],
type="value")
inp += go.STEREO_OFFSET_EXPONENT, gr.Slider(label="Magic exponent", minimum=1, maximum=2, step=1)
inp += go.STEREO_BALANCE, gr.Slider(minimum=-1.0, maximum=1.0, step=0.05,
label='Balance between eyes')
with gr.Box():
with gr.Row():
inp += go.GEN_NORMALMAP, gr.Checkbox(label="Generate NormalMap")
with gr.Column(visible=False) as normalmap_options:
with gr.Row():
inp += go.NORMALMAP_PRE_BLUR, gr.Checkbox(label="Smooth before calculating normals")
inp += go.NORMALMAP_PRE_BLUR_KERNEL, gr.Slider(minimum=1, maximum=31, step=2, label='Pre-smooth kernel size', visible=False)
inp.add_rule(go.NORMALMAP_PRE_BLUR_KERNEL, 'visible-if', go.NORMALMAP_PRE_BLUR)
with gr.Row():
inp += go.NORMALMAP_SOBEL, gr.Checkbox(label="Sobel gradient")
inp += go.NORMALMAP_SOBEL_KERNEL, gr.Slider(minimum=1, maximum=31, step=2, label='Sobel kernel size')
inp.add_rule(go.NORMALMAP_SOBEL_KERNEL, 'visible-if', go.NORMALMAP_SOBEL)
with gr.Row():
inp += go.NORMALMAP_POST_BLUR, gr.Checkbox(label="Smooth after calculating normals")
inp += go.NORMALMAP_POST_BLUR_KERNEL, gr.Slider(minimum=1, maximum=31, step=2, label='Post-smooth kernel size', visible=False)
inp.add_rule(go.NORMALMAP_POST_BLUR_KERNEL, 'visible-if', go.NORMALMAP_POST_BLUR)
with gr.Row():
inp += go.NORMALMAP_INVERT, gr.Checkbox(label="Invert")
if backbone.get_opt('depthmap_script_gen_heatmap_from_ui', False):
with gr.Box():
with gr.Row():
inp += go.GEN_HEATMAP, gr.Checkbox(label="Generate HeatMap")
with gr.Box():
with gr.Column():
inp += go.GEN_SIMPLE_MESH, gr.Checkbox(label="Generate simple 3D mesh")
with gr.Column(visible=False) as mesh_options:
with gr.Row():
gr.HTML(value="Generates fast, accurate only with ZoeDepth models and no boost, no custom maps.")
with gr.Row():
inp += go.SIMPLE_MESH_OCCLUDE, gr.Checkbox(label="Remove occluded edges")
inp += go.SIMPLE_MESH_SPHERICAL, gr.Checkbox(label="Equirectangular projection")
if is_depth_tab:
with gr.Box():
with gr.Column():
inp += go.GEN_INPAINTED_MESH, gr.Checkbox(
label="Generate 3D inpainted mesh")
with gr.Column(visible=False) as inpaint_options_row_0:
gr.HTML("Generation is sloooow. Required for generating videos from mesh.")
inp += go.GEN_INPAINTED_MESH_DEMOS, gr.Checkbox(
label="Generate 4 demo videos with 3D inpainted mesh.")
gr.HTML("More options for generating video can be found in the Generate video tab.")
with gr.Box():
# TODO: it should be clear from the UI that there is an option of the background removal
# that does not use the model selected above
with gr.Row():
inp += go.GEN_REMBG, gr.Checkbox(label="Remove background")
with gr.Column(visible=False) as bgrem_options:
with gr.Row():
inp += go.SAVE_BACKGROUND_REMOVAL_MASKS, gr.Checkbox(label="Save the foreground masks")
inp += go.PRE_DEPTH_BACKGROUND_REMOVAL, gr.Checkbox(label="Pre-depth background removal")
with gr.Row():
inp += go.REMBG_MODEL, gr.Dropdown(
label="Rembg Model", type="value",
choices=['u2net', 'u2netp', 'u2net_human_seg', 'silueta', "isnet-general-use", "isnet-anime"])
with gr.Box():
gr.HTML(f"{SCRIPT_FULL_NAME}<br/>")
gr.HTML("Information, comment and share @ <a "
"href='https://github.com/thygate/stable-diffusion-webui-depthmap-script'>"
"https://github.com/thygate/stable-diffusion-webui-depthmap-script</a>")
def update_default_net_size(model_type):
w, h = ModelHolder.get_default_net_size(model_type)
return inp[go.NET_WIDTH].update(value=w), inp[go.NET_HEIGHT].update(value=h)
inp[go.MODEL_TYPE].change(
fn=update_default_net_size,
inputs=inp[go.MODEL_TYPE],
outputs=[inp[go.NET_WIDTH], inp[go.NET_HEIGHT]]
)
inp[go.BOOST].change( # Go boost! Wroom!..
fn=lambda a, b: (inp[go.NET_SIZE_MATCH].update(visible=not a),
options_depend_on_match_size.update(visible=not a and not b)),
inputs=[inp[go.BOOST], inp[go.NET_SIZE_MATCH]],
outputs=[inp[go.NET_SIZE_MATCH], options_depend_on_match_size]
)
inp.add_rule(options_depend_on_match_size, 'visible-if-not', go.NET_SIZE_MATCH)
inp[go.TILING_MODE].change( # Go boost! Wroom!..
fn=lambda a: (
inp[go.BOOST].update(value=False), inp[go.NET_SIZE_MATCH].update(value=True)
) if a else (inp[go.BOOST].update(), inp[go.NET_SIZE_MATCH].update()),
inputs=[inp[go.TILING_MODE]],
outputs=[inp[go.BOOST], inp[go.NET_SIZE_MATCH]]
)
inp.add_rule(options_depend_on_output_depth_1, 'visible-if', go.DO_OUTPUT_DEPTH)
inp.add_rule(go.OUTPUT_DEPTH_INVERT, 'visible-if', go.DO_OUTPUT_DEPTH)
inp.add_rule(go.OUTPUT_DEPTH_COMBINE_AXIS, 'visible-if', go.OUTPUT_DEPTH_COMBINE)
inp.add_rule(go.CLIPDEPTH_MODE, 'visible-if', go.CLIPDEPTH)
inp.add_rule(clip_options_row_1, 'visible-if', go.CLIPDEPTH)
inp[go.CLIPDEPTH_FAR].change(
fn=lambda a, b: a if b < a else b,
inputs=[inp[go.CLIPDEPTH_FAR], inp[go.CLIPDEPTH_NEAR]],
outputs=[inp[go.CLIPDEPTH_NEAR]],
show_progress=False
)
inp[go.CLIPDEPTH_NEAR].change(
fn=lambda a, b: a if b > a else b,
inputs=[inp[go.CLIPDEPTH_NEAR], inp[go.CLIPDEPTH_FAR]],
outputs=[inp[go.CLIPDEPTH_FAR]],
show_progress=False
)
inp.add_rule(stereo_options, 'visible-if', go.GEN_STEREO)
inp.add_rule(normalmap_options, 'visible-if', go.GEN_NORMALMAP)
inp.add_rule(mesh_options, 'visible-if', go.GEN_SIMPLE_MESH)
if is_depth_tab:
inp.add_rule(inpaint_options_row_0, 'visible-if', go.GEN_INPAINTED_MESH)
inp.add_rule(bgrem_options, 'visible-if', go.GEN_REMBG)
return inp
def open_folder_action():
# Adapted from stable-diffusion-webui
f = backbone.get_outpath()
if backbone.get_cmd_opt('hide_ui_dir_config', False):
return
if not os.path.exists(f) or not os.path.isdir(f):
raise Exception("Couldn't open output folder") # .isdir is security-related, do not remove!
import platform
import subprocess as sp
path = os.path.normpath(f)
if platform.system() == "Windows":
os.startfile(path)
elif platform.system() == "Darwin":
sp.Popen(["open", path])
elif "microsoft-standard-WSL2" in platform.uname().release:
sp.Popen(["wsl-open", path])
else:
sp.Popen(["xdg-open", path])
def depthmap_mode_video(inp):
gr.HTML(value="Single video mode allows generating videos from videos. Please "
"keep in mind that all the frames of the video need to be processed - therefore it is important to "
"pick settings so that the generation is not too slow. For the best results, "
"use a zoedepth model, since they provide the highest level of coherency between frames.")
inp += gr.File(elem_id='depthmap_vm_input', label="Video or animated file",
file_count="single", interactive=True, type="file")
inp += gr.Checkbox(elem_id="depthmap_vm_custom_checkbox",
label="Use custom/pregenerated DepthMap video", value=False)
inp += gr.Dropdown(elem_id="depthmap_vm_smoothening_mode", label="Smoothening",
type="value", choices=['none', 'experimental'], value='experimental')
inp += gr.File(elem_id='depthmap_vm_custom', file_count="single",
interactive=True, type="file", visible=False)
with gr.Row():
inp += gr.Checkbox(elem_id='depthmap_vm_compress_checkbox', label="Compress colorvideos?", value=False)
inp += gr.Slider(elem_id='depthmap_vm_compress_bitrate', label="Bitrate (kbit)", visible=False,
minimum=1000, value=15000, maximum=50000, step=250)
inp.add_rule('depthmap_vm_custom', 'visible-if', 'depthmap_vm_custom_checkbox')
inp.add_rule('depthmap_vm_smoothening_mode', 'visible-if-not', 'depthmap_vm_custom_checkbox')
inp.add_rule('depthmap_vm_compress_bitrate', 'visible-if', 'depthmap_vm_compress_checkbox')
return inp
custom_css = """
#depthmap_vm_input {height: 75px}
#depthmap_vm_custom {height: 75px}
"""
def on_ui_tabs():
inp = GradioComponentBundle()
with gr.Blocks(analytics_enabled=False, title="DepthMap", css=custom_css) as depthmap_interface:
with gr.Row(equal_height=False):
with gr.Column(variant='panel'):
inp += 'depthmap_mode', gr.HTML(visible=False, value='0')
with gr.Tabs():
with gr.TabItem('Single Image') as depthmap_mode_0:
with gr.Group():
with gr.Row():
inp += gr.Image(label="Source", source="upload", interactive=True, type="pil",
elem_id="depthmap_input_image")
# TODO: depthmap generation settings should disappear when using this
inp += gr.File(label="Custom DepthMap", file_count="single", interactive=True,
type="file", elem_id='custom_depthmap_img', visible=False)
inp += gr.Checkbox(elem_id="custom_depthmap", label="Use custom DepthMap", value=False)
with gr.TabItem('Batch Process') as depthmap_mode_1:
inp += gr.File(elem_id='image_batch', label="Batch Process", file_count="multiple",
interactive=True, type="file")
with gr.TabItem('Batch from Directory') as depthmap_mode_2:
inp += gr.Textbox(elem_id="depthmap_batch_input_dir", label="Input directory",
**backbone.get_hide_dirs(),
placeholder="A directory on the same machine where the server is running.")
inp += gr.Textbox(elem_id="depthmap_batch_output_dir", label="Output directory",
**backbone.get_hide_dirs(),
placeholder="Leave blank to save images to the default path.")
gr.HTML("Files in the output directory may be overwritten.")
inp += gr.Checkbox(elem_id="depthmap_batch_reuse",
label="Skip generation and use (edited/custom) depthmaps "
"in output directory when a file already exists.",
value=True)
with gr.TabItem('Single Video') as depthmap_mode_3:
inp = depthmap_mode_video(inp)
submit = gr.Button('Generate', elem_id="depthmap_generate", variant='primary')
inp |= main_ui_panel(True) # Main panel is inserted here
unloadmodels = gr.Button('Unload models', elem_id="depthmap_unloadmodels")
with gr.Column(variant='panel'):
with gr.Tabs(elem_id="mode_depthmap_output"):
with gr.TabItem('Depth Output'):
with gr.Group():
result_images = gr.Gallery(label='Output', show_label=False,
elem_id=f"depthmap_gallery", columns=4)
with gr.Column():
html_info = gr.HTML()
folder_symbol = '\U0001f4c2' # 📂
gr.Button(folder_symbol, visible=not backbone.get_cmd_opt('hide_ui_dir_config', False)).click(
fn=lambda: open_folder_action(), inputs=[], outputs=[],
)
with gr.TabItem('3D Mesh'):
with gr.Group():
result_depthmesh = gr.Model3D(label="3d Mesh", clear_color=[1.0, 1.0, 1.0, 1.0])
with gr.Row():
# loadmesh = gr.Button('Load')
clearmesh = gr.Button('Clear')
with gr.TabItem('Generate video'):
# generate video
with gr.Group():
with gr.Row():
gr.Markdown("Generate video from inpainted(!) mesh.")
with gr.Row():
depth_vid = gr.Video(interactive=False)
with gr.Column():
vid_html_info_x = gr.HTML()
vid_html_info = gr.HTML()
fn_mesh = gr.Textbox(label="Input Mesh (.ply | .obj)", **backbone.get_hide_dirs(),
placeholder="A file on the same machine where "
"the server is running.")
with gr.Row():
vid_numframes = gr.Textbox(label="Number of frames", value="300")
vid_fps = gr.Textbox(label="Framerate", value="40")
vid_format = gr.Dropdown(label="Format", choices=['mp4', 'webm'], value='mp4',
type="value", elem_id="video_format")
vid_ssaa = gr.Dropdown(label="SSAA", choices=['1', '2', '3', '4'], value='3',
type="value", elem_id="video_ssaa")
with gr.Row():
vid_traj = gr.Dropdown(label="Trajectory",
choices=['straight-line', 'double-straight-line', 'circle'],
value='double-straight-line', type="index",
elem_id="video_trajectory")
vid_shift = gr.Textbox(label="Translate: x, y, z", value="-0.015, 0.0, -0.05")
vid_border = gr.Textbox(label="Crop: top, left, bottom, right",
value="0.03, 0.03, 0.05, 0.03")
vid_dolly = gr.Checkbox(label="Dolly", value=False, elem_classes="smalltxt")
with gr.Row():
submit_vid = gr.Button('Generate Video', elem_id="depthmap_generatevideo",
variant='primary')
inp += inp.enkey_tail()
depthmap_mode_0.select(lambda: '0', None, inp['depthmap_mode'])
depthmap_mode_1.select(lambda: '1', None, inp['depthmap_mode'])
depthmap_mode_2.select(lambda: '2', None, inp['depthmap_mode'])
depthmap_mode_3.select(lambda: '3', None, inp['depthmap_mode'])
def custom_depthmap_change_fn(mode, zero_on, three_on):
hide = mode == '0' and zero_on or mode == '3' and three_on
return inp['custom_depthmap_img'].update(visible=hide), \
inp['depthmap_gen_row_0'].update(visible=not hide), \
inp['depthmap_gen_row_1'].update(visible=not hide), \
inp['depthmap_gen_row_3'].update(visible=not hide), not hide
custom_depthmap_change_els = ['depthmap_mode', 'custom_depthmap', 'depthmap_vm_custom_checkbox']
for el in custom_depthmap_change_els:
inp[el].change(
fn=custom_depthmap_change_fn,
inputs=[inp[el] for el in custom_depthmap_change_els],
outputs=[inp[st] for st in [
'custom_depthmap_img', 'depthmap_gen_row_0', 'depthmap_gen_row_1', 'depthmap_gen_row_3',
go.DO_OUTPUT_DEPTH]])
unloadmodels.click(
fn=unload_models,
inputs=[],
outputs=[]
)
clearmesh.click(
fn=lambda: None,
inputs=[],
outputs=[result_depthmesh]
)
submit.click(
fn=backbone.wrap_gradio_gpu_call(run_generate),
inputs=inp.enkey_body(),
outputs=[
result_images,
fn_mesh,
result_depthmesh,
html_info
]
)
submit_vid.click(
fn=backbone.wrap_gradio_gpu_call(run_makevideo),
inputs=[
fn_mesh,
vid_numframes,
vid_fps,
vid_traj,
vid_shift,
vid_border,
vid_dolly,
vid_format,
vid_ssaa
],
outputs=[
depth_vid,
vid_html_info_x,
vid_html_info
]
)
return depthmap_interface
def format_exception(e: Exception):
traceback.print_exc()
msg = '<h3>' + 'ERROR: ' + str(e) + '</h3>' + '\n'
if 'out of GPU memory' in msg:
pass
elif "torch.hub.load('facebookresearch/dinov2'," in traceback.format_exc():
msg += ('<h4>To use Depth Anything integration in WebUI mode, please add "--disable-safe-unpickle" to the command line flags. '
'Alternatively, use Standalone mode. This is a known issue.')
elif "Error(s) in loading state_dict " in traceback.format_exc():
msg += ('<h4>There was issue during loading the model.'
'Please add "--disable-safe-unpickle" to the command line flags. This is a known issue.')
elif 'out of GPU memory' not in msg:
msg += \
'Please report this issue ' \
f'<a href="https://github.com/thygate/{REPOSITORY_NAME}/issues">here</a>. ' \
'Make sure to provide the full stacktrace: \n'
msg += '<code style="white-space: pre;">' + traceback.format_exc() + '</code>'
return msg
def run_generate(*inputs):
inputs = GradioComponentBundle.enkey_to_dict(inputs)
depthmap_mode = inputs['depthmap_mode']
depthmap_batch_input_dir = inputs['depthmap_batch_input_dir']
image_batch = inputs['image_batch']
depthmap_input_image = inputs['depthmap_input_image']
depthmap_batch_output_dir = inputs['depthmap_batch_output_dir']
depthmap_batch_reuse = inputs['depthmap_batch_reuse']
custom_depthmap = inputs['custom_depthmap']
custom_depthmap_img = inputs['custom_depthmap_img']
inputimages = []
inputdepthmaps = [] # Allow supplying custom depthmaps
inputnames = [] # Also keep track of original file names
if depthmap_mode == '3':
try:
custom_depthmap = inputs['depthmap_vm_custom'] \
if inputs['depthmap_vm_custom_checkbox'] else None
colorvids_bitrate = inputs['depthmap_vm_compress_bitrate'] \
if inputs['depthmap_vm_compress_checkbox'] else None
ret = video_mode.gen_video(
inputs['depthmap_vm_input'], backbone.get_outpath(), inputs, custom_depthmap, colorvids_bitrate,
inputs['depthmap_vm_smoothening_mode'])
return [], None, None, ret
except Exception as e:
ret = format_exception(e)
return [], None, None, ret
if depthmap_mode == '2' and depthmap_batch_output_dir != '':
outpath = depthmap_batch_output_dir
else:
outpath = backbone.get_outpath()
if depthmap_mode == '0': # Single image
if depthmap_input_image is None:
return [], None, None, "Please select an input image"
inputimages.append(depthmap_input_image)
inputnames.append(None)
if custom_depthmap:
if custom_depthmap_img is None:
return [], None, None, \
"Custom depthmap is not specified. Please either supply it or disable this option."
inputdepthmaps.append(Image.open(os.path.abspath(custom_depthmap_img.name)))
else:
inputdepthmaps.append(None)
if depthmap_mode == '1': # Batch Process
if image_batch is None:
return [], None, None, "Please select input images", ""
for img in image_batch:
image = Image.open(os.path.abspath(img.name))
inputimages.append(image)
inputnames.append(os.path.splitext(img.orig_name)[0])
print(f'{len(inputimages)} images will be processed')
elif depthmap_mode == '2': # Batch from Directory
# TODO: There is a RAM leak when we process batches, I can smell it! Or maybe it is gone.
assert not backbone.get_cmd_opt('hide_ui_dir_config', False), '--hide-ui-dir-config option must be disabled'
if depthmap_batch_input_dir == '':
return [], None, None, "Please select an input directory."
if depthmap_batch_input_dir == depthmap_batch_output_dir:
return [], None, None, "Please pick different directories for batch processing."
image_list = backbone.listfiles(depthmap_batch_input_dir)
for path in image_list:
try:
inputimages.append(Image.open(path))
inputnames.append(path)
custom_depthmap = None
if depthmap_batch_reuse:
basename = Path(path).stem
# Custom names are not used in samples directory
if outpath != backbone.get_opt('outdir_extras_samples', None):
# Possible filenames that the custom depthmaps may have
name_candidates = [f'{basename}-0000.{backbone.get_opt("samples_format", "png")}', # current format
f'{basename}.png', # human-intuitive format
f'{Path(path).name}'] # human-intuitive format (worse)
for fn_cand in name_candidates:
path_cand = os.path.join(outpath, fn_cand)
if os.path.isfile(path_cand):
custom_depthmap = Image.open(os.path.abspath(path_cand))
break
inputdepthmaps.append(custom_depthmap)
except Exception as e:
print(f'Failed to load {path}, ignoring. Exception: {str(e)}')
inputdepthmaps_n = len([1 for x in inputdepthmaps if x is not None])
print(f'{len(inputimages)} images will be processed, {inputdepthmaps_n} existing depthmaps will be reused')
gen_obj = core_generation_funnel(outpath, inputimages, inputdepthmaps, inputnames, inputs, backbone.gather_ops())
# Saving images
img_results = []
results_total = 0
inpainted_mesh_fi = mesh_simple_fi = None
msg = "" # Empty string is never returned
while True:
try:
input_i, type, result = next(gen_obj)
results_total += 1
except StopIteration:
# TODO: return more info
msg = '<h3>Successfully generated</h3>' if results_total > 0 else \
'<h3>Successfully generated nothing - please check the settings and try again</h3>'
break
except Exception as e:
msg = format_exception(e)
break
if type == 'simple_mesh':
mesh_simple_fi = result
continue
if type == 'inpainted_mesh':
inpainted_mesh_fi = result
continue
if not isinstance(result, Image.Image):
print(f'This is not supposed to happen! Somehow output type {type} is not supported! Input_i: {input_i}.')
continue
img_results += [(input_i, type, result)]
if inputs["save_outputs"]:
try:
basename = 'depthmap'
if depthmap_mode == '2' and inputnames[input_i] is not None:
if outpath != backbone.get_opt('outdir_extras_samples', None):
basename = Path(inputnames[input_i]).stem
suffix = "" if type == "depth" else f"{type}"
backbone.save_image(result, path=outpath, basename=basename, seed=None,
prompt=None, extension=backbone.get_opt('samples_format', 'png'), short_filename=True,
no_prompt=True, grid=False, pnginfo_section_name="extras",
suffix=suffix)
except Exception as e:
if not ('image has wrong mode' in str(e) or 'I;16' in str(e)):
raise e
print('Catched exception: image has wrong mode!')
traceback.print_exc()
# Deciding what mesh to display (and if)
display_mesh_fi = None
if backbone.get_opt('depthmap_script_show_3d', True):
display_mesh_fi = mesh_simple_fi
if backbone.get_opt('depthmap_script_show_3d_inpaint', True):
if inpainted_mesh_fi is not None and len(inpainted_mesh_fi) > 0:
display_mesh_fi = inpainted_mesh_fi
return map(lambda x: x[2], img_results), inpainted_mesh_fi, display_mesh_fi, msg.replace('\n', '<br>')
|