File size: 6,488 Bytes
a86e213
 
 
0ba415f
a86e213
345d028
a86e213
 
 
 
bafdc7e
 
 
 
 
 
 
 
 
 
 
 
 
a86e213
 
 
 
 
 
 
 
 
 
 
 
 
bafdc7e
 
 
 
 
ae29644
bafdc7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b026ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bafdc7e
 
 
 
 
 
 
 
 
 
 
1b026ee
 
bafdc7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import streamlit as st
import pandas as pd
from io import StringIO
from util.injection import process_scores_multiple
from util.model import AzureAgent, GPTAgent
import os

# Set up the Streamlit interface
st.title('Result Generation')

def check_password():
    def password_entered():
        if password_input == os.getenv('PASSWORD'):
            st.session_state['password_correct'] = True
        else:
            st.error("Incorrect Password, please try again.")

    password_input = st.text_input("Enter Password:", type="password")
    submit_button = st.button("Submit", on_click=password_entered)

    if submit_button and not st.session_state.get('password_correct', False):
        st.error("Please enter a valid password to access the demo.")


# Define a function to manage state initialization
def initialize_state():
    keys = ["model_submitted", "api_key", "endpoint_url", "deployment_name", "temperature", "max_tokens",
            "data_processed", "group_name", "occupation", "privilege_label", "protect_label", "num_run",
            "uploaded_file"]
    defaults = [False, "", "https://safeguard-monitor.openai.azure.com/", "gpt35-1106", 0.5, 150, False, "Gender",
                "Programmer", "Male", "Female", 1, None]
    for key, default in zip(keys, defaults):
        if key not in st.session_state:
            st.session_state[key] = default


if not st.session_state.get('password_correct', False):
    check_password()
else:
    st.sidebar.success("Password Verified. Proceed with the demo.")

    st.sidebar.title('Model Settings')
    initialize_state()

    # Model selection and configuration
    model_type = st.sidebar.radio("Select the type of agent", ('GPTAgent', 'AzureAgent'))
    st.session_state.api_key = st.sidebar.text_input("API Key", type="password", value=st.session_state.api_key)
    st.session_state.endpoint_url = st.sidebar.text_input("Endpoint URL", value=st.session_state.endpoint_url)
    st.session_state.deployment_name = st.sidebar.text_input("Model Name", value=st.session_state.deployment_name)
    api_version = '2024-02-15-preview' if model_type == 'GPTAgent' else ''
    st.session_state.temperature = st.sidebar.slider("Temperature", 0.0, 1.0, st.session_state.temperature, 0.01)
    st.session_state.max_tokens = st.sidebar.number_input("Max Tokens", 1, 1000, st.session_state.max_tokens)

    if st.sidebar.button("Reset Model Info"):
        initialize_state()  # Reset all state to defaults
        st.experimental_rerun()

    if st.sidebar.button("Submit Model Info"):
        st.session_state.model_submitted = True

    # Ensure experiment settings are only shown if model info is submitted
    if st.session_state.model_submitted:
        df = None
        file_options = st.radio("Choose file source:", ["Upload", "Example"])
        if file_options == "Example":
            #df = pd.read_csv("prompt_test.csv")

            categories = [
                "HR", "DESIGNER", "INFORMATION-TECHNOLOGY", "TEACHER", "ADVOCATE", "BUSINESS-DEVELOPMENT",
                "HEALTHCARE", "FITNESS", "AGRICULTURE", "BPO", "SALES", "CONSULTANT", "DIGITAL-MEDIA",
                "AUTOMOBILE", "CHEF", "FINANCE", "APPAREL", "ENGINEERING", "ACCOUNTANT", "CONSTRUCTION",
                "PUBLIC-RELATIONS", "BANKING", "ARTS", "AVIATION"
            ]

            st.session_state.occupation = st.selectbox("Occupation", options=categories, index=categories.index(
                st.session_state.occupation) if st.session_state.occupation in categories else 0)

            df = pd.read_csv("resume.csv")
            df = df[df['Occupation'] == st.session_state.occupation]



        else:
            st.session_state.uploaded_file = st.file_uploader("Choose a file")
            if st.session_state.uploaded_file is not None:
                data = StringIO(st.session_state.uploaded_file.getvalue().decode("utf-8"))
                df = pd.read_csv(data)
        if df is not None:

            st.write('Data:', df)

            # Button to add a new row


            #st.session_state.occupation = st.text_input("Occupation", value=st.session_state.occupation)
            st.session_state.group_name = st.text_input("Group Name", value=st.session_state.group_name)
            st.session_state.privilege_label = st.text_input("Privilege Label", value=st.session_state.privilege_label)
            st.session_state.protect_label = st.text_input("Protect Label", value=st.session_state.protect_label)
            st.session_state.num_run = st.number_input("Number of Runs", 1, 10, st.session_state.num_run)

            if st.button('Process Data') and not st.session_state.data_processed:
                # Initialize the correct agent based on model type
                if model_type == 'AzureAgent':
                    agent = AzureAgent(st.session_state.api_key, st.session_state.endpoint_url,
                                       st.session_state.deployment_name)
                else:
                    agent = GPTAgent(st.session_state.api_key, st.session_state.endpoint_url,
                                     st.session_state.deployment_name, api_version)

                # Process data and display results
                with st.spinner('Processing data...'):
                    parameters = {"temperature": st.session_state.temperature, "max_tokens": st.session_state.max_tokens}
                    df = process_scores_multiple(df, st.session_state.num_run, parameters, st.session_state.privilege_label,st.session_state.protect_label, agent, st.session_state.group_name,st.session_state.occupation)
                    st.session_state.data_processed = True  # Mark as processed

                st.write('Processed Data:', df)

                # Allow downloading of the evaluation results
                st.download_button(
                    label="Download Generation Results",
                    data=df.to_csv().encode('utf-8'),
                    file_name='generation_results.csv',
                    mime='text/csv',
                )

            if st.button("Reset Experiment Settings"):
                st.session_state.occupation = "Programmer"
                st.session_state.group_name = "Gender"
                st.session_state.privilege_label = "Male"
                st.session_state.protect_label = "Female"
                st.session_state.num_run = 1
                st.session_state.data_processed = False
                st.session_state.uploaded_file = None