Spaces:
Running
Running
File size: 7,929 Bytes
e770ab5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import pandas as pd
import numpy as np
from scipy.stats import friedmanchisquare, kruskal, mannwhitneyu, wilcoxon, levene, ttest_ind, f_oneway
from statsmodels.stats.multicomp import MultiComparison
import pandas as pd
import numpy as np
from scipy.stats import spearmanr, pearsonr, kendalltau, entropy
from scipy.spatial.distance import jensenshannon
def hellinger_distance(p, q):
"""Calculate the Hellinger distance between two probability distributions."""
return np.sqrt(0.5 * np.sum((np.sqrt(p) - np.sqrt(q)) ** 2))
def calculate_correlations(df):
"""Calculate Spearman, Pearson, and Kendall's Tau correlations for the given ranks in the dataframe."""
correlations = {
'Spearman': {},
'Pearson': {},
'Kendall Tau': {}
}
columns = ['Privilege_Rank', 'Protect_Rank', 'Neutral_Rank']
for i in range(len(columns)):
for j in range(i + 1, len(columns)):
col1, col2 = columns[i], columns[j]
correlations['Spearman'][f'{col1} vs {col2}'] = spearmanr(df[col1], df[col2]).correlation
correlations['Pearson'][f'{col1} vs {col2}'] = pearsonr(df[col1], df[col2])[0]
correlations['Kendall Tau'][f'{col1} vs {col2}'] = kendalltau(df[col1], df[col2]).correlation
return correlations
def scores_to_prob(scores):
"""Convert scores to probability distributions."""
value_counts = scores.value_counts()
probabilities = value_counts / value_counts.sum()
full_prob = np.zeros(int(scores.max()) + 1)
full_prob[value_counts.index.astype(int)] = probabilities
return full_prob
def calculate_divergences(df):
"""Calculate KL, Jensen-Shannon divergences, and Hellinger distance for the score distributions."""
score_columns = ['Privilege_Avg_Score', 'Protect_Avg_Score', 'Neutral_Avg_Score']
probabilities = {col: scores_to_prob(df[col]) for col in score_columns}
divergences = {
'KL Divergence': {},
'Jensen-Shannon Divergence': {},
'Hellinger Distance': {}
}
for i in range(len(score_columns)):
for j in range(i + 1, len(score_columns)):
col1, col2 = score_columns[i], score_columns[j]
divergences['KL Divergence'][f'{col1} vs {col2}'] = entropy(probabilities[col1], probabilities[col2])
divergences['Jensen-Shannon Divergence'][f'{col1} vs {col2}'] = jensenshannon(probabilities[col1],
probabilities[col2])
divergences['Hellinger Distance'][f'{col1} vs {col2}'] = hellinger_distance(probabilities[col1],
probabilities[col2])
return divergences
def statistical_tests(data, test_type='multiple'):
if test_type == 'multiple':
variables = ['Privilege', 'Protect', 'Neutral']
rank_suffix = '_Rank'
score_suffix = '_Avg_Score'
elif test_type == 'single':
variables = ['Counterfactual', 'Neutral']
rank_suffix = '_Rank'
score_suffix = '_Avg_Score'
else:
raise ValueError("test_type must be either 'multiple' or 'single'")
# Calculate average ranks
rank_columns = [v + rank_suffix for v in variables]
average_ranks = data[rank_columns].mean()
# Statistical tests
rank_data = [data[col] for col in rank_columns]
kw_stat, kw_p = kruskal(*rank_data)
mw_stat, mw_p = mannwhitneyu(*rank_data[:2])
# Wilcoxon Signed-Rank Test between pairs
p_value_wilcoxon = wilcoxon(data[variables[0] + rank_suffix], data[variables[1] + rank_suffix]).pvalue if len(data) > 20 else "Sample size too small for Wilcoxon test."
# Levene's Test for equality of variances
score_columns = [v + score_suffix for v in variables]
levene_stat, levene_p = levene(data[variables[0] + score_suffix], data[variables[1] + score_suffix])
# T-test for independent samples
t_stat, t_p = ttest_ind(data[variables[0] + score_suffix], data[variables[1] + score_suffix], equal_var=(levene_p > 0.05))
# ANOVA and post-hoc tests if applicable
score_data = [data[col] for col in score_columns]
anova_stat, anova_p = f_oneway(*score_data)
if anova_p < 0.05:
mc = MultiComparison(pd.concat(score_data), np.repeat(variables, len(data)))
tukey_result = mc.tukeyhsd()
else:
tukey_result = "ANOVA not significant, no post-hoc test performed."
results = {
"Average Ranks": average_ranks,
"Friedman Test": {"Statistic": friedmanchisquare(*rank_data).statistic if test_type == 'multiple' else np.nan, "p-value": friedmanchisquare(*rank_data).pvalue if test_type == 'multiple' else np.nan},
"Kruskal-Wallis Test": {"Statistic": kw_stat, "p-value": kw_p},
"Mann-Whitney U Test": {"Statistic": mw_stat, "p-value": mw_p},
"Wilcoxon Test Between Pairs": p_value_wilcoxon,
"Levene's Test": {"Statistic": levene_stat, "p-value": levene_p},
"T-Test (Independent)": {"Statistic": t_stat, "p-value": t_p},
"ANOVA Test": {"Statistic": anova_stat, "p-value": anova_p},
"Tukey HSD Test": tukey_result
}
return results
def result_evaluation(test_results, test_type='multiple'):
evaluation = {}
if test_type == 'multiple':
variables = ['Privilege', 'Protect', 'Neutral']
elif test_type == 'single':
variables = ['Counterfactual', 'Neutral']
else:
raise ValueError("test_type must be either 'multiple' or 'single'")
# Format average ranks and rank analysis
rank_format = ", ".join([f"{v}: {{:.2f}}".format(test_results['Average Ranks'][f'{v}_Rank']) for v in variables])
evaluation['Average Ranks'] = rank_format
min_rank = test_results['Average Ranks'].idxmin()
max_rank = test_results['Average Ranks'].idxmax()
rank_analysis = f"Lowest average rank: {min_rank} (suggests highest preference), Highest average rank: {max_rank} (suggests least preference)."
evaluation['Rank Analysis'] = rank_analysis
# Statistical tests evaluation
for test_name, result in test_results.items():
if 'Test' in test_name and test_name != 'Tukey HSD Test': # Generalizing test evaluations
if isinstance(result, dict) and 'p-value' in result:
p_value = result['p-value']
significant = p_value < 0.05
test_label = test_name.replace('_', ' ').replace('Test Between', 'between')
evaluation[test_name] = f"Significant {test_label.lower()} observed (p = {p_value:.5f}), indicating potential biases." if significant else f"No significant {test_label.lower()}."
else:
evaluation[test_name] = "Test result format error or incomplete data."
# Special case evaluations
if 'Wilcoxon Test Between Pairs' in test_results:
wilcoxon_result = test_results['Wilcoxon Test Between Pairs']
if isinstance(wilcoxon_result, float):
evaluation['Wilcoxon Test Between Pairs'] = f"Significant rank difference between {variables[0]} and {variables[1]} (p = {wilcoxon_result:.5f}), indicating bias." if wilcoxon_result < 0.05 else f"No significant rank difference between {variables[0]} and {variables[1]}."
else:
evaluation['Wilcoxon Test Between Pairs'] = wilcoxon_result # Presuming it's an error message or non-numeric value
# ANOVA and Tukey HSD tests
if test_type == 'multiple':
anova_p = test_results['ANOVA Test'].get('p-value', 1) # Default to 1 if p-value is missing
evaluation['ANOVA Test'] = f"No significant differences among all groups (p = {anova_p:.5f}), no further post-hoc analysis required." if anova_p >= 0.05 else test_results['ANOVA Test']
evaluation['Tukey HSD Test'] = test_results.get('Tukey HSD Test', 'Tukey test not performed or data missing.')
return evaluation
|