File size: 18,794 Bytes
4559323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
from prompts import get_classification_prompt, get_query_generation_prompt
from utils_code import initialize_openai_creds, create_llm
from llama_index.core.schema import QueryBundle, NodeWithScore
from llama_index.core.retrievers import BaseRetriever, VectorIndexRetriever
from transformers import pipeline
from typing import List, Optional
import asyncio
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.core.indices.property_graph import LLMSynonymRetriever
from llama_index.core.indices.property_graph import VectorContextRetriever, PGRetriever
from llama_index.core.retrievers import BaseRetriever, VectorIndexRetriever, KGTableRetriever
import os


class PARetriever(BaseRetriever):
    """Custom retriever that performs query rewriting, Vector search, and BM25 search without Knowledge Graph search."""

    def __init__(
        self,
        llm,  # LLM for query generation
        vector_retriever: Optional[VectorIndexRetriever] = None,
        bm25_retriever: Optional[BaseRetriever] = None,
        mode: str = "OR",
        rewriter: bool = True,
        classifier_model: Optional[str] = None,  # Optional classifier model
        device: str = 'cpu',  # Device to CPU for huggingface demo
        reranker_model_name: Optional[str] = None,  # Model name for SentenceTransformerRerank
        verbose: bool = False,  # Verbose flag
        fixed_params: Optional[dict] = None,  # New parameter to pass in fixed parameters
        categories_list: Optional[List[str]] = None,  # List of categories for query classification
        param_mappings: Optional[dict] = None  # Custom parameter mappings based on classifier labels
    ) -> None:
        """Initialize PARetriever parameters."""
        self._vector_retriever = vector_retriever
        self._bm25_retriever = bm25_retriever
        self._llm = llm
        self._rewriter = rewriter
        self._mode = mode
        self._reranker_model_name = reranker_model_name
        self._reranker = None  # Initialize reranker as None
        self.verbose = verbose
        self.fixed_params = fixed_params
        self.categories_list = categories_list
        self.param_mappings = param_mappings or {  
            "label_0": {"top_k": 5, "max_keywords_per_query": 3, "max_knowledge_sequence": 1},
            "label_1": {"top_k": 7, "max_keywords_per_query": 4, "max_knowledge_sequence": 2},
            "label_2": {"top_k": 10, "max_keywords_per_query": 5, "max_knowledge_sequence": 3}
        }

        # Initialize the classifier if provided
        self.classifier = None
        if classifier_model:
            self.classifier = pipeline("text-classification", model=classifier_model, device=device)

        if mode not in ("AND", "OR"):
            raise ValueError("Invalid mode.")

    def classify_query_and_get_params(self, query: str) -> (str, dict):
        """Classify the query and determine adaptive parameters or use fixed parameters."""
        if self.fixed_params:
            # Use fixed parameters from the dictionary if provided
            params = self.fixed_params
            classification_result = "Fixed"
            if self.verbose:
                print(f"Using fixed parameters: {params}")
        else:
            params = {
                "top_k": 5,  # Default top-k
                "max_keywords_per_query": 4,  # Default max keywords
                "max_knowledge_sequence": 2  # Default max knowledge sequence
            }
            classification_result = None

            if self.classifier:
                classification = self.classifier(query)[0]
                label = classification['label']  # Get the classification label directly
                classification_result = label  # Store the classification result
                if self.verbose:
                    print(f"Query Classification: {classification['label']} with score {classification['score']}")

                # Use custom mappings or default mappings
                if label in self.param_mappings:
                    params = self.param_mappings[label]
                else:
                    if self.verbose:
                        print(f"Warning: No mapping found for label {label}, using default parameters.")

        self._classification_result = classification_result
        return classification_result, params

    def classify_query(self, query_str: str) -> Optional[str]:
        """Classify the query into one of the predefined categories using LLM, or skip if no categories are provided."""
        if not self.categories_list:
            if self.verbose:
                print("No categories provided, skipping query classification.")
            return None

        # Generate the classification prompt using external function
        classification_prompt = get_classification_prompt(self.categories_list) + f" Query: '{query_str}'"

        response = self._llm.complete(classification_prompt)
        category = response.text.strip()

        # Return the category only if it's in the categories list
        return category if category in self.categories_list else None

    def generate_queries(self, query_str: str, category: Optional[str], num_queries: int = 3) -> List[str]:
        """Generate query variations using the LLM, taking into account the category if applicable."""

        # Generate query generation prompt using external function
        query_gen_prompt = get_query_generation_prompt(query_str, num_queries)

        response = self._llm.complete(query_gen_prompt)
        queries = response.text.split("\n")

        queries = [query.strip() for query in queries if query.strip()]

        if category:
            category_query = f"{category}"
            queries.append(category_query)

        return queries

    async def run_queries(self, queries: List[str], retrievers: List[BaseRetriever]) -> dict:
        """Run queries against retrievers."""
        tasks = []
        for query in queries:
            for retriever in retrievers:
                tasks.append(retriever.aretrieve(query))

        task_results = await asyncio.gather(*tasks)

        results_dict = {}
        for i, (query, query_result) in enumerate(zip(queries, task_results)):
            results_dict[(query, i)] = query_result
        return results_dict

    def fuse_vector_and_bm25_results(self, results_dict, similarity_top_k: int) -> List[NodeWithScore]:
        """Fuse results from Vector and BM25 retrievers."""
        k = 60.0  # `k` is a parameter used to control the impact of outlier rankings.
        fused_scores = {}
        text_to_node = {}

        for nodes_with_scores in results_dict.values():
            for rank, node_with_score in enumerate(
                sorted(nodes_with_scores, key=lambda x: x.score or 0.0, reverse=True)
            ):
                text = node_with_score.node.get_content()
                text_to_node[text] = node_with_score
                if text not in fused_scores:
                    fused_scores[text] = 0.0
                fused_scores[text] += 1.0 / (rank + k)

        reranked_results = dict(sorted(fused_scores.items(), key=lambda x: x[1], reverse=True))

        reranked_nodes: List[NodeWithScore] = []
        for text, score in reranked_results.items():
            if text in text_to_node:
                node = text_to_node[text]
                node.score = score
                reranked_nodes.append(node)
            else:
                if self.verbose:
                    print(f"Warning: Text not found in `text_to_node`: {text}")

        return reranked_nodes[:similarity_top_k]

    def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
        """Retrieve nodes given query."""
        if self._rewriter:
            category = self.classify_query(query_bundle.query_str)
            if self.verbose and category:
                print(f"Classified Category: {category}")

        classification_result, params = self.classify_query_and_get_params(query_bundle.query_str)
        self._classification_result = classification_result

        top_k = params["top_k"]

        if self._reranker_model_name:
            self._reranker = SentenceTransformerRerank(model=self._reranker_model_name, top_n=top_k)
            if self.verbose:
                print(f"Initialized reranker with top_n: {top_k}")

        num_queries = 3 if top_k == 5 else 5 if top_k == 7 else 7
        if self.verbose:
            print(f"Number of Query Rewrites: {num_queries}")

        if self._rewriter:
            queries = self.generate_queries(query_bundle.query_str, category, num_queries=num_queries)
            if self.verbose:
                print(f"Generated Queries: {queries}")
        else:
            queries = [query_bundle.query_str]

        active_retrievers = []
        if self._vector_retriever:
            active_retrievers.append(self._vector_retriever)
        if self._bm25_retriever:
            active_retrievers.append(self._bm25_retriever)

        if not active_retrievers:
            raise ValueError("No active retriever provided!")

        results = {}
        if active_retrievers:
            results = asyncio.run(self.run_queries(queries, active_retrievers))
            if self.verbose:
                print(f"Fusion Results: {results}")

        final_results = self.fuse_vector_and_bm25_results(results, similarity_top_k=top_k)

        if self._reranker:
            final_results = self._reranker.postprocess_nodes(final_results, query_bundle)
            if self.verbose:
                print(f"Reranked Results: {final_results}")
        else:
            final_results = final_results[:top_k]

        if self._rewriter:
            unique_nodes = {}
            for node in final_results:
                content = node.node.get_content()
                if content not in unique_nodes:
                    unique_nodes[content] = node
            final_results = list(unique_nodes.values())

        if self.verbose:
            print(f"Final Results: {final_results}")

        return final_results

    def get_classification_result(self) -> str:
        return getattr(self, "_classification_result", None)


class HyPARetriever(PARetriever):
    """Custom retriever that extends PARetriever with knowledge graph (KG) search."""
    
    def __init__(
        self,
        llm,  # LLM for query generation
        vector_retriever: Optional[VectorIndexRetriever] = None,
        bm25_retriever: Optional[BaseRetriever] = None,
        kg_index=None,  # Pass the knowledge graph index
        property_index: bool = True,  # Whether to use the property graph for retrieval
        pg_filters=None,
        **kwargs,  # Pass any additional arguments to PARetriever
    ):
        # Initialize PARetriever to reuse all its functionality
        super().__init__(
            llm=llm,
            vector_retriever=vector_retriever,
            bm25_retriever=bm25_retriever,
            **kwargs
        )

        # Initialize knowledge graph (KG) specific components
        self._pg_filters = pg_filters
        self._kg_index = kg_index
        self.property_index = property_index

    def _initialize_kg_retriever(self, params):
        """Initialize the KG retriever based on retrieval mode."""
        graph_index = self._kg_index
        filters = self._pg_filters

        if self._kg_index and not self.property_index:
            # If not using property index, use KGTableRetriever
            return KGTableRetriever(
                index=self._kg_index,
                retriever_mode='hybrid',
                max_keywords_per_query=params["max_keywords_per_query"],
                max_knowledge_sequence=params["max_knowledge_sequence"]
            )
        
        elif self._kg_index and self.property_index:
            # If using property index, use the simpler graph index retriever
            # Use this for the DEMO 

            vector_retriever = VectorContextRetriever(
                graph_store=graph_index.property_graph_store,
                similarity_top_k=params["max_keywords_per_query"],
                path_depth=params["max_knowledge_sequence"],
                include_text=True,
                filters=filters
            )
            synonym_retriever = LLMSynonymRetriever(
                graph_store=graph_index.property_graph_store,
                llm=self._llm,
                include_text=True,
                filters=filters
            )
            return graph_index.as_retriever(sub_retrievers=[vector_retriever, synonym_retriever])
            #return graph_index.as_retriever(similarity_top_k=params["top_k"])
        
        return None

    def _combine_with_kg_results(self, vector_bm25_results, kg_results):
        """Combine KG results with vector and BM25 results."""
        vector_ids = {n.node.id_ for n in vector_bm25_results}
        kg_ids = {n.node.id_ for n in kg_results}
        
        combined_results = {n.node.id_: n for n in vector_bm25_results}
        combined_results.update({n.node.id_: n for n in kg_results})

        if self._mode == "AND":
            result_ids = vector_ids.intersection(kg_ids)
        else:
            result_ids = vector_ids.union(kg_ids)

        return [combined_results[rid] for rid in result_ids]

    def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
        """Retrieve nodes with KG integration."""
        # Call PARetriever's _retrieve to get the vector and BM25 results
        final_results = super()._retrieve(query_bundle)

        # If we have a KG index, initialize the retriever
        if self._kg_index:
            kg_retriever = self._initialize_kg_retriever(self.classify_query_and_get_params(query_bundle.query_str)[1])
            
            if kg_retriever:
                kg_nodes = kg_retriever.retrieve(query_bundle)
                
                # Only combine KG and vector/BM25 results if property_index is True
                if self.property_index:
                    final_results = self._combine_with_kg_results(final_results, kg_nodes)
        
        return final_results



import os
from dotenv import load_dotenv
from llama_index.llms.azure_openai import AzureOpenAI
from llama_index.core import VectorStoreIndex, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.retrievers import KGTableRetriever, VectorIndexRetriever
from llama_index.retrievers.bm25 import BM25Retriever
from llama_index.readers.file import PyMuPDFReader
from llama_index.core.chat_engine import ContextChatEngine
from llama_index.core.memory.chat_memory_buffer import ChatMemoryBuffer
from llama_index.core import KnowledgeGraphIndex
from retrievers import PARetriever, HyPARetriever


def load_documents():
    """Load and return documents from specified file paths."""
    loader = PyMuPDFReader()
    documents1 = loader.load(file_path="../../legal_data/LL144/LL144.pdf")
    documents2 = loader.load(file_path="../../legal_data/LL144/LL144_Definitions.pdf")
    return documents1 + documents2

def create_indices(documents, llm, embed_model):
    """Create and return VectorStoreIndex and KnowledgeGraphIndex from documents."""
    splitter = SentenceSplitter(chunk_size=512)
    
    vector_index = VectorStoreIndex.from_documents(
        documents,
        embed_model=embed_model,
        transformations=[splitter]
    )
    
    """graph_index = KnowledgeGraphIndex.from_documents(
        documents,
        max_triplets_per_chunk=5,
        llm=llm,
        embed_model=embed_model,
        include_embeddings=True,
        transformations=[splitter]
    )"""

    return vector_index#, graph_index

def create_retrievers(vector_index, graph_index, llm, category_list):
    """Create and return the PA and HyPA retrievers."""
    vector_retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=10)
    bm25_retriever = BM25Retriever.from_defaults(index=vector_index, similarity_top_k=10)

    PA_retriever = PARetriever(
        llm=llm,
        categories_list=category_list,
        rewriter=True,
        vector_retriever=vector_retriever,
        bm25_retriever=bm25_retriever,
        classifier_model="rk68/distilbert-q-classifier-3",
        verbose=False
    )

    HyPA_retriever = HyPARetriever(
        llm=llm,
        categories_list=category_list,
        rewriter=True,
        kg_index=graph_index,
        vector_retriever=vector_retriever,
        bm25_retriever=bm25_retriever,
        classifier_model="rk68/distilbert-q-classifier-3",
        verbose=False,
        property_index=False
    )
    
    return PA_retriever, HyPA_retriever

def create_chat_engine(retriever, memory):
    """Create and return the ContextChatEngine using the provided retriever and memory."""
    return ContextChatEngine.from_defaults(
        retriever=retriever,
        verbose=False,
        chat_mode="context",
        memory_cls=memory,
        memory=memory
    )

def main():
    # Initialize environment and LLM
    gpt35_creds, gpt4o_mini_creds, gpt4o_creds = initialize_openai_creds()
    llm_gpt35 = create_llm(gpt35_creds=gpt35_creds, gpt4o_mini_creds=gpt4o_mini_creds, gpt4o_creds=gpt4o_creds)
    
    # Set global settings for embedding model and LLM
    embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-large-en-v1.5")
    Settings.embed_model = embed_model
    Settings.llm = llm_gpt35
    
    category_list = [
        '5-301 Bias Audit',
        '5-302 Data Requirements',
        '§ 5-303 Published Results',
        '§ 5-304 Notice to Candidates and Employees'
    ]
    
    # Load documents and create indices
    documents = load_documents()
    vector_index, graph_index = create_indices(documents, llm_gpt35, embed_model)
    
    # Create retrievers
    PA_retriever, HyPA_retriever = create_retrievers(vector_index, graph_index, llm_gpt35, category_list)
    
    # Initialize chat memory
    memory = ChatMemoryBuffer.from_defaults(token_limit=8192)
    
    # Create chat engines
    PA_chat_engine = create_chat_engine(PA_retriever, memory)
    HyPA_chat_engine = create_chat_engine(HyPA_retriever, memory)
    
    # Sample question and response
    question = "What is a bias audit?"
    PA_response = PA_chat_engine.chat(question)
    HyPA_response = HyPA_chat_engine.chat(question)
    
    # Output responses in a nicely formatted manner
    print("\n" + "="*50)
    print(f"Question: {question}")
    print("="*50)
    
    print("\n------- PA Retriever Response -------")
    print(PA_response)
    
    print("\n------- HyPA Retriever Response -------")
    print(HyPA_response)
    print("="*50 + "\n")

if __name__ == '__main__':
    main()