File size: 25,407 Bytes
44db343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
import string
from nltk.tokenize import word_tokenize
import numpy as np
import re
import unidecode
import nltk
import json
import os
real_file_path = "/".join(os.path.realpath(__file__).split("/")[:-1])
nltk.download('punkt')
from dataset.vocab import Vocab
from ast import literal_eval

class SynthesizeData(object):
    """
    Uitils class to create artificial miss-spelled words
    Args:
        vocab_path: path to vocab file. Vocab file is expected to be a set of words, separate by ' ', no newline charactor.
    """

    def __init__(self, vocab: Vocab):

        self.vocab = vocab
        self.tokenizer = word_tokenize

        self.vn_alphabet = ['a', 'ă', 'â', 'b', 'c', 'd', 'đ', 'e', 'ê', 'g', 'h', 'i', 'k', 'l', 'm', 'n', 'o', 'ô',
                            'ơ', 'p', 'q', 'r', 's', 't', 'u', 'ư', 'v', 'x', 'y']
        self.alphabet_len = len(self.vn_alphabet)
        self.word_couples = [pair.strip("\n").split(" ") for pair in open(os.path.join(real_file_path, "noising_resources/kieu_go_dau_cu_moi.txt"), "r", encoding='utf-8').readlines()]
        self.homowords = literal_eval(open( os.path.join(real_file_path, "noising_resources/confusion_set.json"), "r", encoding='utf-8').read())
        self.homo_leters_dict = literal_eval(open( os.path.join(real_file_path, "noising_resources/homo_leter.json"), "r", encoding='utf-8').read())

        self.teencode_dict = {'mình': ['mk', 'mik', 'mjk'], 'vô': ['zô', 'zo', 'vo'], 'vậy': ['zậy', 'z', 'zay', 'za'],
                              'phải': ['fải', 'fai', ], 'biết': ['bit', 'biet'],
                              'rồi': ['rùi', 'ròi', 'r'], 'bây': ['bi', 'bay'], 'giờ': ['h', ],
                              'không': ['k', 'ko', 'khong', 'hk', 'hong', 'hông', '0', 'kg', 'kh', ],
                              'đi': ['di', 'dj', ], 'gì': ['j', ], 'em': ['e', ], 'được': ['dc', 'đc', ], 'tao': ['t'],
                              'tôi': ['t'], 'chồng': ['ck'], 'vợ': ['vk']
                              }

        self.typo = json.load( open(os.path.join(real_file_path,"noising_resources/typo.json"), "r", encoding='utf-8'))
        self.all_char_candidates = self.get_all_char_candidates()
        self.all_word_candidates = self.get_all_word_candidates()

    def replace_teencode(self, word):
        candidates = self.teencode_dict.get(word, None)
        if candidates is not None:
            chosen_one = 0
            if len(candidates) > 1:
                chosen_one = np.random.randint(0, len(candidates))
            return candidates[chosen_one]

    
    def replace_char_candidate(self, char):
        """
        return a homophone char/subword of the input char.
        """
        return np.random.choice(self.homo_leters_dict[char])

    def replace_word_candidate(self, word):
        """
        Return a new typo word of the input word for example òa oà
        """
        capital_flag = word[0].isupper()
        word = word.lower()
        if capital_flag and word in self.teencode_dict:
            return self.replace_teencode(word).capitalize()
        elif word in self.teencode_dict:
            return self.replace_teencode(word)

        for couple in self.word_couples:
            for i in range(2):
                if couple[i] == word:
                    if i == 0:
                        if capital_flag:
                            return couple[1].capitalize()
                        else:
                            return couple[1]
                    else:
                        if capital_flag:
                            return couple[0].capitalize()
                        else:
                            return couple[0]

    def replace_homo_candidate(self, word):
        """
        Return a homo word of the input word
        """
        capital_flag = word[0].isupper()
        word = word.lower()

        def random_capitalize(word):
            index = np.random.randint(0, len(word))
            return word[0:index] + word[index].upper() + word[index+1:]

        candidate_type = np.random.choice(["phu_am_dau", "phu_am_cuoi", "nguyen_am"]\
            , p = [0.1, 0.3, 0.6])
        if candidate_type == "nguyen_am":
            coin = np.random.choice([0, 1], p = [0.7, 0.3])
            candidates = list(self.homowords[word][candidate_type][coin])
        else:
            candidates = list(self.homowords[word][candidate_type])
        if len(candidates) == 0:
            if capital_flag:
                return word
            return random_capitalize(word)

        candidate = np.random.choice(candidates)
        if capital_flag:
            return candidate.capitalize()
        return candidate 

    def replace_char_candidate_typo(self, char):
        """
        return a homophone char/subword of the input char.
        """
        candidates = self.typo[char]
        num_lower_priority = len(candidates) - 1
        round_flag = 10 * num_lower_priority

        return np.random.choice(candidates, p = [0.7, *[3 / round_flag for i in range(num_lower_priority)]])
    
    

    def get_all_char_candidates(self):

        return list(self.homo_leters_dict.keys())

    def get_all_word_candidates(self):

        all_word_candidates = []
        for couple in self.word_couples:
            all_word_candidates.extend(couple)
        return all_word_candidates


    def remove_diacritics(self, text, onehot_label):
        """
        Replace word which has diacritics with the same word without diacritics
        Args:
            text: a list of word tokens
            onehot_label: onehot array indicate position of word that has already modify, so this
            function only choose the word that do not has onehot label == 1.
        return: a list of word tokens has one word that its diacritics was removed,
                a list of onehot label indicate the position of words that has been modified.
        """

        if len(text) == len(' '.join(text).split()):
            its_me = True
        else:
            its_me = False

        idx = np.random.randint(0, len(onehot_label))
        prevent_loop = 0
        noised_token = unidecode.unidecode(text[idx])
        while onehot_label[idx] != 0 or not self.vocab.exist(text[idx]) or text[idx] in string.punctuation or text[idx] == noised_token:
            idx = np.random.randint(0, len(onehot_label))
            noised_token = unidecode.unidecode(text[idx])
            prevent_loop += 1
            if prevent_loop > 10:
                return False, text, onehot_label

        onehot_label[idx] = 1
        token = text[idx]
        text[idx] = unidecode.unidecode(text[idx])

        if (len(text) != len(' '.join(text).split())) and its_me:
            print("ERROR:")
            print("text: ", text)
            print("replaced token: ", text[idx])
            print("org token: ", token)

        return True, text, onehot_label

    def replace_with_random_letter(self, text, onehot_label):
        """
        Replace, add (or remove) a random letter in a random chosen word with a random letter
        Args:
            text: a list of word tokens
            onehot_label: onehot array indicate position of word that has already modify, so this
            function only choose the word that do not has onehot label == 1.
        return: a list of word tokens has one word that has been modified,
                a list of onehot label indicate the position of words that has been modified.
        """

        if len(text) == len(' '.join(text).split()):
            its_me = True
        else:
            its_me = False

        idx = np.random.randint(0, len(onehot_label))
        prevent_loop = 0
        while onehot_label[idx] != 0 or not self.vocab.exist(text[idx]) or len(text[idx]) < 3:
            idx = np.random.randint(0, len(onehot_label))
            prevent_loop += 1
            if prevent_loop > 10:
                return False, text, onehot_label

        

        # replace, add or remove? 0 is replace, 1 is add, 2 is remove
        # 0.8 1 edits, 0.2 2 edits
        num_edit = np.random.choice([1,2], p = [0.8, 0.2])
        coin = np.random.choice([0, 1, 2])
        
        for i in range(num_edit):
            token = list(text[idx])
            if coin == 0:
                chosen_idx = np.random.randint(0, len(token))
                replace_candidate = self.vn_alphabet[np.random.randint(
                    0, self.alphabet_len)]
                token[chosen_idx] = replace_candidate
                text[idx] = "".join(token)
            elif coin == 1:
                chosen_idx = np.random.randint(0, len(token) + 1)
                if chosen_idx == len(token):
                    added_chars = self.vn_alphabet[np.random.randint(0, self.alphabet_len)] + \
                        token[0]
                    chosen_idx = 0
                else:
                    added_chars = token[chosen_idx] + \
                        self.vn_alphabet[np.random.randint(0, self.alphabet_len)]
                
                token[chosen_idx] = added_chars
                text[idx] = "".join(token)
            else:
                chosen_idx = np.random.randint(0, len(token))
                token[chosen_idx] = ""
                text[idx] = "".join(token)

        onehot_label[idx] = 1

        if (len(text) != len(' '.join(text).split())) and its_me:
            print("ERROR:")
            print("text: ", text)
            print("replaced token: ", text[idx])
            print("org token: ", token)
            print("coin: ", coin)
            return False, text, onehot_label

        return True, text, onehot_label

    def replace_with_new_typo_word(self, text, onehot_label):
        """
        Replace a candidate word (if exist in the word_couple) with its homophone. if successful, return True, else False
        Args:
            text: a list of word tokens
            onehot_label: onehot array indicate position of word that has already modify, so this
            function only choose the word that do not has onehot label == 1.
        return: True, text, onehot_label if successful replace, else False, text, onehot_label
        """
        # account for the case that the word in the text is upper case but its lowercase match the candidates list

        if len(text) == len(' '.join(text).split()):
            its_me = True
        else:
            its_me = False

        candidates = []
        for i in range(len(text)):
            if text[i].lower() in self.all_word_candidates or text[i].lower() in self.teencode_dict.keys():
                candidates.append((i, text[i]))

        if len(candidates) == 0:
            return False, text, onehot_label

        idx = np.random.randint(0, len(candidates))
        prevent_loop = 0
        while onehot_label[candidates[idx][0]] != 0 or not self.vocab.exist(candidates[idx][1]):
            idx = np.random.choice(np.arange(0, len(candidates)))
            prevent_loop += 1
            if prevent_loop > 10:
                return False, text, onehot_label

        text[candidates[idx][0]] = self.replace_word_candidate(
            candidates[idx][1])

        if (len(text) != len(' '.join(text).split())) and its_me:
            print("ERROR:")
            print("text: ", text)
            print("replaced token: ", text[candidates[idx][0]])
            print("org token: ", candidates[idx][1])

        onehot_label[candidates[idx][0]] = 1
        return True, text, onehot_label
    
    def replace_with_homophone_word(self, text, onehot_label):
        """
        Replace a candidate word (if exist in the word_couple) with its homophone. if successful, return True, else False
        Args:
            text: a list of word tokens
            onehot_label: onehot array indicate position of word that has already modify, so this
            function only choose the word that do not has onehot label == 1.
        return: True, text, onehot_label if successful replace, else False, text, onehot_label
        """
        # account for the case that the word in the text is upper case but its lowercase match the candidates list

        if len(text) == len(' '.join(text).split()):
            its_me = True
        else:
            its_me = False

        candidates = []
        for i in range(len(text)):
            if text[i].lower() in self.homowords:
                candidates.append((i, text[i]))

        if len(candidates) == 0:
            return False, text, onehot_label

        idx = np.random.randint(0, len(candidates))
        prevent_loop = 0
        while onehot_label[candidates[idx][0]] != 0 or not self.vocab.exist(candidates[idx][1]):
            idx = np.random.choice(np.arange(0, len(candidates)))
            prevent_loop += 1
            if prevent_loop > 10:
                return False, text, onehot_label

        text[candidates[idx][0]] = self.replace_homo_candidate(
            candidates[idx][1])

        if (len(text) != len(' '.join(text).split())) and its_me:
            print("ERROR:")
            print("text: ", text)
            print("replaced token: ", text[candidates[idx][0]])
            print("org token: ", candidates[idx][1])
            return False, text, onehot_label

        onehot_label[candidates[idx][0]] = 1
        return True, text, onehot_label

    def replace_with_homophone_letter(self, text, onehot_label):

        """
        Replace a subword/letter with its homophones
        Args:
            text: a list of word tokens
            onehot_label: onehot array indicate position of word that has already modify, so this
            function only choose the word that do not has onehot label == 1.
        return: True, text, onehot_label if successful replace, else False, None, None
        """

        if len(text) == len(' '.join(text).split()):
            its_me = True
        else:
            its_me = False

        candidates = []
        for i in range(len(text)):
            for char in self.all_char_candidates:
                if re.search("^" + char, text[i]) is not None:
                    candidates.append((i, char, "^" + char ))
                if re.search(char + "$", text[i]) is not None:
                    candidates.append((i, char, char + "$"))

        if len(candidates) == 0:

            return False, text, onehot_label

        else:
            idx = np.random.randint(0, len(candidates))
            prevent_loop = 0
            while onehot_label[candidates[idx][0]] != 0 or not self.vocab.exist(text[candidates[idx][0]]) or len(text[candidates[idx][0]]) < 2:
                idx = np.random.randint(0, len(candidates))
                prevent_loop += 1
                if prevent_loop > 10:
                    return False, text, onehot_label

            replaced = self.replace_char_candidate(candidates[idx][1])
            ## 0.15% remove the candidate. cát -> cá
            coin = np.random.choice([0, 1], p = [0.8, 0.2])
            text_to_replace = text[candidates[idx][0]]
            result = re.sub(candidates[idx][2], replaced if coin == 0 else "",
                         text_to_replace)
            if result == "":
                result = re.sub(candidates[idx][2], replaced,
                         text_to_replace)

            text[candidates[idx][0]] = result
            
            if (len(text) != len(' '.join(text).split())) and its_me:
                print("ERROR:")
                print("text: ", text)
                print("replaced token: ", text[candidates[idx][0]])
                print("letter: ", candidates[idx][1])
                print("replaced letter: ", replaced)

            onehot_label[candidates[idx][0]] = 1
            return True, text, onehot_label

    def replace_with_typo_letter(self, text, onehot_label):
        """
        Replace a subword/letter with its homophones
        Args:
            text: a list of word tokens
            onehot_label: onehot array indicate position of word that has already modify, so this
            function only choose the word that do not has onehot label == 1.
        return: True, text, onehot_label if successful replace, else False, None, None
        """

        if len(text) == len(' '.join(text).split()):
            its_me = True
        else:
            its_me = False

        # find index noise
        idx = np.random.randint(0, len(onehot_label))
        prevent_loop = 0
        while onehot_label[idx] != 0 or not self.vocab.exist(text[idx]):
            idx = np.random.randint(0, len(onehot_label))
            prevent_loop += 1
            if prevent_loop > 10:
                return False, text, onehot_label

        index_noise = idx
        onehot_label[index_noise] = 1

        org_word = text[index_noise]
        word_noise = text[index_noise]

        pattern = "(" + "|".join(self.typo.keys()) + "){1}"
        candidates = re.findall(pattern, word_noise)
        if len(candidates) == 0:
            return False, text, onehot_label
        accent_pattern = "(s|f|r|x|j|1|2|3|4|5){1}"
        for candidate in candidates:
            replaced = self.replace_char_candidate_typo(candidate)
            # Move accent to the end of text
            result = re.findall(accent_pattern, replaced)
            if len(result) != 0:
                word_noise = re.sub(candidate, replaced[0:-1], word_noise)
                word_noise += replaced[-1]
            else:
                word_noise = re.sub(candidate, replaced, word_noise)

        text[index_noise] = word_noise

        if len(word_noise) < 3:
            return True, text, onehot_label
        ### Introduce one or two edit on text
        num_edits = np.random.choice([0, 1, 2], p = [0.5, 0.35, 0.15])
        
        for i in range(num_edits):
            coin = np.random.choice([0, 1, 2, 3])
            word_noise = list(text[index_noise])
            start_char = word_noise.pop(0)
            
            if coin == 0:
                chosen_idx = np.random.randint(0, len(word_noise))
                word_noise[chosen_idx] = self.vn_alphabet[np.random.randint(0, self.alphabet_len)]
                text[index_noise] = start_char + "".join(word_noise)
            elif coin == 1:
                chosen_idx = np.random.randint(0, len(word_noise))
                word_noise[chosen_idx] += self.vn_alphabet[np.random.randint(0, self.alphabet_len)]
                text[index_noise] = start_char + "".join(word_noise)
            elif coin == 2:
                if len(word_noise) < 2:
                    continue
                chosen_idxs = np.random.choice(range(len(word_noise)), size = 2)
                word_noise[chosen_idxs[0]], word_noise[chosen_idxs[1]] = \
                    word_noise[chosen_idxs[1]], word_noise[chosen_idxs[0]]
                text[index_noise] = start_char + "".join(word_noise)
            else:
                chosen_idx = np.random.randint(0, len(word_noise))
                word_noise[chosen_idx] = ""
                text[index_noise] = start_char + "".join(word_noise)

        return True, text, onehot_label

    def split_word(self, text, onehot_label):

        # find index noise
        idx = np.random.randint(0, len(onehot_label))
        prevent_loop = 0
        while onehot_label[idx] not in [0, 1] or len(text[idx]) < 3 or text[idx] in r'''!"#$%&'()*+,-./:;<=>?@[]^_`{|}~''' :
            idx = np.random.randint(0, len(onehot_label))
            prevent_loop += 1
            if prevent_loop > 10:
                return False, text, onehot_label

        org_word = text[idx]
        new_text = text[:idx]
        new_onehot = onehot_label[:idx]

        index_split = np.random.randint(1, len(org_word))

        new_text.extend([org_word[:index_split], org_word[index_split:]])
        new_onehot.extend([2, 2])

        if idx < len(text) - 1:
            new_text.extend(text[idx+1:])
            new_onehot.extend(onehot_label[idx+1:])

        return True, new_text, new_onehot

    def merge_word(self, text, onehot_label):
        length = len(onehot_label)
        if length < 2:
            return False, text, onehot_label

        def validate_len(idx, size):
            while idx + size > length:
                if idx > 0:
                    idx -= 1
                else:
                    size -= 1
            return idx, size

        def validate_value(idx, size):
            for i in range(idx, idx+size):
                if onehot_label[i] not in [0, 1] or text[i] in r'''!"#$%&'()*+,-./:;<=>?@[]^_`{|}~''':
                    return False
            return True

        # find index noise
        min_words = 2
        max_words = 3 if length > 3 else length
        num_words = np.random.randint(min_words, max_words + 1)
        idx = np.random.randint(0, length)
        prevent_loop = 0
        idx, num_words = validate_len(idx, num_words)
        while not validate_value(idx, num_words) :
            prevent_loop += 1
            if prevent_loop > 10:
                return False, text, onehot_label
            idx = np.random.randint(0, length)
            num_words = np.random.randint(min_words, max_words + 1)
            idx, num_words = validate_len(idx, num_words)

        new_text = text[:idx]
        new_onehot = onehot_label[:idx]
        new_text.append(''.join(text[idx:idx+num_words]))

        new_onehot.append(-num_words+1)

        if idx + num_words < length:
            new_text.extend(text[idx+num_words:])
            new_onehot.extend(onehot_label[idx+num_words:])

        return True, new_text, new_onehot

    def add_normal_noise(self, sentence, percent_err=0.2, num_type_err=4):

        tokens = sentence.split()

        if len(tokens) <= 0:
            print(f"SOMETHING WROONG - sent: {sentence}")

        onehot_label = [0] * len(tokens)

        num_wrong = int(np.ceil(percent_err * len(tokens)))
        num_wrong = np.random.randint(1, num_wrong + 1)
        if np.random.rand() < 0.05:
            num_wrong = 0

        prevent_loop = 0

        for i in range(0, num_wrong):
            
            err = np.random.choice(range(num_type_err + 1)\
                , p = [0.15, 0.15, 0.1, 0.2, 0.4])

            if err == 0:
                _, tokens, onehot_label = self.remove_diacritics(
                    tokens, onehot_label)
                    
            elif err == 1:
                _, tokens, onehot_label = self.replace_with_typo_letter(
                    tokens, onehot_label)

            elif err == 2:
                _, tokens, onehot_label = self.replace_with_random_letter(
                    tokens, onehot_label)

            elif err == 3:
                _, tokens, onehot_label = self.replace_with_homophone_letter(
                tokens, onehot_label)

            else:
                _, tokens, onehot_label = self.replace_with_homophone_word(
                    tokens, onehot_label)


            prevent_loop += 1

            if prevent_loop > 10:
                return ' '.join(tokens), ' '.join([str(i) for i in onehot_label])

            # print(tokens)

            self.verify(tokens, sentence)

        return ' '.join(tokens), ' '.join([str(i) for i in onehot_label])

    def add_split_merge_noise(self, sentence, percent_err=0.15, num_type_err=2, percent_normal_err = 0.15):

        def count_zero_one(onehot_label):
            return sum([1 if onehot in [0, 1] else 0 for onehot in onehot_label])
        
        ## Introduce normal noise before split merge
        normal_noise, normal_onehot = self.add_normal_noise(
                sentence, percent_err=percent_normal_err)
        
        tokens = normal_noise.split()
        length = len(tokens)

        onehot_label = [int(x) for x in normal_onehot.split(" ")]

        num_wrong = int(np.ceil(percent_err * length))
        num_wrong = np.random.randint(1, num_wrong + 1)
        if np.random.rand() < 0.05:
            num_wrong = 0

        min_zeroes = length - num_wrong
        zero_one_num = length
        prevent_loop = 0
        while zero_one_num  > min_zeroes:

            err = np.random.randint(0, num_type_err)

            if err == 0:
                _, tokens, onehot_label = self.split_word(
                    tokens, onehot_label)
                    
            else:
                _, tokens, onehot_label = self.merge_word(
                    tokens, onehot_label)

            prevent_loop += 1

            if prevent_loop > 10:
                return ' '.join(tokens), ' '.join([str(i) for i in onehot_label])

            zero_one_num = count_zero_one(onehot_label)

        return ' '.join(tokens), ' '.join([str(i) for i in onehot_label])

    def verify(self, noised_tokens, sentence):
        if len(noised_tokens) != len(' '.join(noised_tokens).split()):
                print("ERROR:")
                print("TEXT  : ", sentence)
                print("TOKENS: ", ' '.join(noised_tokens))
                exit()

        return True


if __name__ == "__main__":
    text = "Ô kìa ai như cô thắm , con bác năm ở xa mới về , nghiêng nghiêng"
    dict_pickle_path = '../data/vi/datasets/vi_wiki/vi_wiki.vocab.test.pkl'
    vocab = Vocab()
    vocab.load_vocab_dict(dict_pickle_path)
    noiser = SynthesizeData(vocab)
    noised_text, onehot_label = noiser.add_split_merge_noise(text, percent_err=0.5)
    print(noised_text)