File size: 9,841 Bytes
ecf08bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#    Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.
import numpy as np
import torch
from batchgenerators.utilities.file_and_folder_operations import join
from nnunet.network_architecture.generic_UNet import Generic_UNet
from nnunet.network_architecture.initialization import InitWeights_He
from nnunet.network_architecture.neural_network import SegmentationNetwork
from nnunet.training.data_augmentation.data_augmentation_insaneDA2 import get_insaneDA_augmentation2
from nnunet.training.data_augmentation.default_data_augmentation import default_3D_augmentation_params, \
    default_2D_augmentation_params, get_patch_size
from nnunet.training.dataloading.dataset_loading import unpack_dataset
from nnunet.training.loss_functions.deep_supervision import MultipleOutputLoss2
from nnunet.training.network_training.nnUNetTrainerV2 import nnUNetTrainerV2, maybe_mkdir_p
from nnunet.utilities.nd_softmax import softmax_helper
from torch import nn


class nnUNetTrainerV2_DA3(nnUNetTrainerV2):
    def setup_DA_params(self):
        super().setup_DA_params()
        self.deep_supervision_scales = [[1, 1, 1]] + list(list(i) for i in 1 / np.cumprod(
            np.vstack(self.net_num_pool_op_kernel_sizes), axis=0))[:-1]

        if self.threeD:
            self.data_aug_params = default_3D_augmentation_params
            self.data_aug_params['rotation_x'] = (-30. / 360 * 2. * np.pi, 30. / 360 * 2. * np.pi)
            self.data_aug_params['rotation_y'] = (-30. / 360 * 2. * np.pi, 30. / 360 * 2. * np.pi)
            self.data_aug_params['rotation_z'] = (-30. / 360 * 2. * np.pi, 30. / 360 * 2. * np.pi)
            if self.do_dummy_2D_aug:
                self.data_aug_params["dummy_2D"] = True
                self.print_to_log_file("Using dummy2d data augmentation")
                self.data_aug_params["elastic_deform_alpha"] = \
                    default_2D_augmentation_params["elastic_deform_alpha"]
                self.data_aug_params["elastic_deform_sigma"] = \
                    default_2D_augmentation_params["elastic_deform_sigma"]
                self.data_aug_params["rotation_x"] = default_2D_augmentation_params["rotation_x"]
        else:
            self.do_dummy_2D_aug = False
            if max(self.patch_size) / min(self.patch_size) > 1.5:
                default_2D_augmentation_params['rotation_x'] = (-180. / 360 * 2. * np.pi, 180. / 360 * 2. * np.pi)
            self.data_aug_params = default_2D_augmentation_params
        self.data_aug_params["mask_was_used_for_normalization"] = self.use_mask_for_norm

        if self.do_dummy_2D_aug:
            self.basic_generator_patch_size = get_patch_size(self.patch_size[1:],
                                                             self.data_aug_params['rotation_x'],
                                                             self.data_aug_params['rotation_y'],
                                                             self.data_aug_params['rotation_z'],
                                                             self.data_aug_params['scale_range'])
            self.basic_generator_patch_size = np.array([self.patch_size[0]] + list(self.basic_generator_patch_size))
        else:
            self.basic_generator_patch_size = get_patch_size(self.patch_size, self.data_aug_params['rotation_x'],
                                                             self.data_aug_params['rotation_y'],
                                                             self.data_aug_params['rotation_z'],
                                                             self.data_aug_params['scale_range'])

        self.data_aug_params['selected_seg_channels'] = [0]
        self.data_aug_params['patch_size_for_spatialtransform'] = self.patch_size

        self.data_aug_params["p_rot"] = 0.3

        self.data_aug_params["scale_range"] = (0.65, 1.6)
        self.data_aug_params["p_scale"] = 0.3
        self.data_aug_params["independent_scale_factor_for_each_axis"] = True
        self.data_aug_params["p_independent_scale_per_axis"] = 0.3

        self.data_aug_params["do_elastic"] = True
        self.data_aug_params["p_eldef"] = 0.3
        self.data_aug_params["eldef_deformation_scale"] = (0, 0.25)

        self.data_aug_params["do_additive_brightness"] = True
        self.data_aug_params["additive_brightness_mu"] = 0
        self.data_aug_params["additive_brightness_sigma"] = 0.2
        self.data_aug_params["additive_brightness_p_per_sample"] = 0.3
        self.data_aug_params["additive_brightness_p_per_channel"] = 1

        self.data_aug_params['gamma_range'] = (0.5, 1.6)

        self.data_aug_params['num_cached_per_thread'] = 4

    def initialize(self, training=True, force_load_plans=False):
        if not self.was_initialized:
            maybe_mkdir_p(self.output_folder)

            if force_load_plans or (self.plans is None):
                self.load_plans_file()

            self.process_plans(self.plans)

            self.setup_DA_params()

            ################# Here we wrap the loss for deep supervision ############
            # we need to know the number of outputs of the network
            net_numpool = len(self.net_num_pool_op_kernel_sizes)

            # we give each output a weight which decreases exponentially (division by 2) as the resolution decreases
            # this gives higher resolution outputs more weight in the loss
            weights = np.array([1 / (2 ** i) for i in range(net_numpool)])

            # we don't use the lowest 2 outputs. Normalize weights so that they sum to 1
            mask = np.array([True] + [True if i < net_numpool - 1 else False for i in range(1, net_numpool)])
            weights[~mask] = 0
            weights = weights / weights.sum()
            self.ds_loss_weights = weights
            # now wrap the loss
            self.loss = MultipleOutputLoss2(self.loss, self.ds_loss_weights)
            ################# END ###################

            self.folder_with_preprocessed_data = join(self.dataset_directory, self.plans['data_identifier'] +
                                                      "_stage%d" % self.stage)
            if training:
                self.dl_tr, self.dl_val = self.get_basic_generators()
                if self.unpack_data:
                    print("unpacking dataset")
                    unpack_dataset(self.folder_with_preprocessed_data)
                    print("done")
                else:
                    print(
                        "INFO: Not unpacking data! Training may be slow due to that. Pray you are not using 2d or you "
                        "will wait all winter for your model to finish!")

                self.tr_gen, self.val_gen = get_insaneDA_augmentation2(
                    self.dl_tr, self.dl_val,
                    self.data_aug_params[
                        'patch_size_for_spatialtransform'],
                    self.data_aug_params,
                    deep_supervision_scales=self.deep_supervision_scales,
                    pin_memory=self.pin_memory
                )
                self.print_to_log_file("TRAINING KEYS:\n %s" % (str(self.dataset_tr.keys())),
                                       also_print_to_console=False)
                self.print_to_log_file("VALIDATION KEYS:\n %s" % (str(self.dataset_val.keys())),
                                       also_print_to_console=False)
            else:
                pass

            self.initialize_network()
            self.initialize_optimizer_and_scheduler()

            assert isinstance(self.network, (SegmentationNetwork, nn.DataParallel))
        else:
            self.print_to_log_file('self.was_initialized is True, not running self.initialize again')
        self.was_initialized = True

    """def run_training(self):
        from batchviewer import view_batch

        a = next(self.tr_gen)
        view_batch(a['data'][:, 0], width=512, height=512)

        import IPython;IPython.embed()"""


class nnUNetTrainerV2_DA3_BN(nnUNetTrainerV2_DA3):
    def initialize_network(self):
        if self.threeD:
            conv_op = nn.Conv3d
            dropout_op = nn.Dropout3d
            norm_op = nn.BatchNorm3d

        else:
            conv_op = nn.Conv2d
            dropout_op = nn.Dropout2d
            norm_op = nn.BatchNorm2d

        norm_op_kwargs = {'eps': 1e-5, 'affine': True}
        dropout_op_kwargs = {'p': 0, 'inplace': True}
        net_nonlin = nn.LeakyReLU
        net_nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True}
        self.network = Generic_UNet(self.num_input_channels, self.base_num_features, self.num_classes,
                                    len(self.net_num_pool_op_kernel_sizes),
                                    self.conv_per_stage, 2, conv_op, norm_op, norm_op_kwargs, dropout_op,
                                    dropout_op_kwargs,
                                    net_nonlin, net_nonlin_kwargs, True, False, lambda x: x, InitWeights_He(1e-2),
                                    self.net_num_pool_op_kernel_sizes, self.net_conv_kernel_sizes, False, True, True)
        if torch.cuda.is_available():
            self.network.cuda()
        self.network.inference_apply_nonlin = softmax_helper