File size: 16,068 Bytes
ecf08bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#    Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


from multiprocessing.pool import Pool
from time import sleep

import matplotlib
from nnunet.postprocessing.connected_components import determine_postprocessing
from nnunet.training.data_augmentation.default_data_augmentation import get_default_augmentation
from nnunet.training.dataloading.dataset_loading import DataLoader3D, unpack_dataset
from nnunet.evaluation.evaluator import aggregate_scores
from nnunet.training.network_training.nnUNetTrainer import nnUNetTrainer
from nnunet.network_architecture.neural_network import SegmentationNetwork
from nnunet.paths import network_training_output_dir
from nnunet.inference.segmentation_export import save_segmentation_nifti_from_softmax
from batchgenerators.utilities.file_and_folder_operations import *
import numpy as np
from nnunet.utilities.one_hot_encoding import to_one_hot
import shutil

matplotlib.use("agg")


class nnUNetTrainerCascadeFullRes(nnUNetTrainer):
    def __init__(self, plans_file, fold, output_folder=None, dataset_directory=None, batch_dice=True, stage=None,
                 unpack_data=True, deterministic=True, previous_trainer="nnUNetTrainer", fp16=False):
        super(nnUNetTrainerCascadeFullRes, self).__init__(plans_file, fold, output_folder, dataset_directory,
                                                          batch_dice, stage, unpack_data, deterministic, fp16)
        self.init_args = (plans_file, fold, output_folder, dataset_directory, batch_dice, stage, unpack_data,
                          deterministic, previous_trainer, fp16)

        if self.output_folder is not None:
            task = self.output_folder.split("/")[-3]
            plans_identifier = self.output_folder.split("/")[-2].split("__")[-1]

            folder_with_segs_prev_stage = join(network_training_output_dir, "3d_lowres",
                                               task, previous_trainer + "__" + plans_identifier, "pred_next_stage")
            if not isdir(folder_with_segs_prev_stage):
                raise RuntimeError(
                    "Cannot run final stage of cascade. Run corresponding 3d_lowres first and predict the "
                    "segmentations for the next stage")
            self.folder_with_segs_from_prev_stage = folder_with_segs_prev_stage
            # Do not put segs_prev_stage into self.output_folder as we need to unpack them for performance and we
            # don't want to do that in self.output_folder because that one is located on some network drive.
        else:
            self.folder_with_segs_from_prev_stage = None

    def do_split(self):
        super(nnUNetTrainerCascadeFullRes, self).do_split()
        for k in self.dataset:
            self.dataset[k]['seg_from_prev_stage_file'] = join(self.folder_with_segs_from_prev_stage,
                                                               k + "_segFromPrevStage.npz")
            assert isfile(self.dataset[k]['seg_from_prev_stage_file']), \
                "seg from prev stage missing: %s" % (self.dataset[k]['seg_from_prev_stage_file'])
        for k in self.dataset_val:
            self.dataset_val[k]['seg_from_prev_stage_file'] = join(self.folder_with_segs_from_prev_stage,
                                                                   k + "_segFromPrevStage.npz")
        for k in self.dataset_tr:
            self.dataset_tr[k]['seg_from_prev_stage_file'] = join(self.folder_with_segs_from_prev_stage,
                                                                  k + "_segFromPrevStage.npz")

    def get_basic_generators(self):
        self.load_dataset()
        self.do_split()
        if self.threeD:
            dl_tr = DataLoader3D(self.dataset_tr, self.basic_generator_patch_size, self.patch_size, self.batch_size,
                                 True, oversample_foreground_percent=self.oversample_foreground_percent)
            dl_val = DataLoader3D(self.dataset_val, self.patch_size, self.patch_size, self.batch_size, True,
                                  oversample_foreground_percent=self.oversample_foreground_percent)
        else:
            raise NotImplementedError
        return dl_tr, dl_val

    def process_plans(self, plans):
        super(nnUNetTrainerCascadeFullRes, self).process_plans(plans)
        self.num_input_channels += (self.num_classes - 1)  # for seg from prev stage

    def setup_DA_params(self):
        super().setup_DA_params()
        self.data_aug_params['move_last_seg_chanel_to_data'] = True
        self.data_aug_params['cascade_do_cascade_augmentations'] = True

        self.data_aug_params['cascade_random_binary_transform_p'] = 0.4
        self.data_aug_params['cascade_random_binary_transform_p_per_label'] = 1
        self.data_aug_params['cascade_random_binary_transform_size'] = (1, 8)

        self.data_aug_params['cascade_remove_conn_comp_p'] = 0.2
        self.data_aug_params['cascade_remove_conn_comp_max_size_percent_threshold'] = 0.15
        self.data_aug_params['cascade_remove_conn_comp_fill_with_other_class_p'] = 0.0

        # we have 2 channels now because the segmentation from the previous stage is stored in 'seg' as well until it
        # is moved to 'data' at the end
        self.data_aug_params['selected_seg_channels'] = [0, 1]
        # needed for converting the segmentation from the previous stage to one hot
        self.data_aug_params['all_segmentation_labels'] = list(range(1, self.num_classes))

    def initialize(self, training=True, force_load_plans=False):
        """
        For prediction of test cases just set training=False, this will prevent loading of training data and
        training batchgenerator initialization
        :param training:
        :return:
        """
        if force_load_plans or (self.plans is None):
            self.load_plans_file()

        self.process_plans(self.plans)

        self.setup_DA_params()

        self.folder_with_preprocessed_data = join(self.dataset_directory, self.plans['data_identifier'] +
                                                  "_stage%d" % self.stage)
        if training:
            self.setup_DA_params()

            if self.folder_with_preprocessed_data is not None:
                self.dl_tr, self.dl_val = self.get_basic_generators()

                if self.unpack_data:
                    print("unpacking dataset")
                    unpack_dataset(self.folder_with_preprocessed_data)
                    print("done")
                else:
                    print(
                        "INFO: Not unpacking data! Training may be slow due to that. Pray you are not using 2d or you "
                        "will wait all winter for your model to finish!")

                self.tr_gen, self.val_gen = get_default_augmentation(self.dl_tr, self.dl_val,
                                                                     self.data_aug_params[
                                                                         'patch_size_for_spatialtransform'],
                                                                     self.data_aug_params)
                self.print_to_log_file("TRAINING KEYS:\n %s" % (str(self.dataset_tr.keys())))
                self.print_to_log_file("VALIDATION KEYS:\n %s" % (str(self.dataset_val.keys())))
        else:
            pass
        self.initialize_network()
        assert isinstance(self.network, SegmentationNetwork)
        self.was_initialized = True

    def validate(self, do_mirroring: bool = True, use_sliding_window: bool = True,
                 step_size: float = 0.5,
                 save_softmax: bool = True, use_gaussian: bool = True, overwrite: bool = True,
                 validation_folder_name: str = 'validation_raw', debug: bool = False, all_in_gpu: bool = False,
                 segmentation_export_kwargs: dict = None, run_postprocessing_on_folds: bool = True):

        current_mode = self.network.training
        self.network.eval()

        assert self.was_initialized, "must initialize, ideally with checkpoint (or train first)"
        if self.dataset_val is None:
            self.load_dataset()
            self.do_split()

        if segmentation_export_kwargs is None:
            if 'segmentation_export_params' in self.plans.keys():
                force_separate_z = self.plans['segmentation_export_params']['force_separate_z']
                interpolation_order = self.plans['segmentation_export_params']['interpolation_order']
                interpolation_order_z = self.plans['segmentation_export_params']['interpolation_order_z']
            else:
                force_separate_z = None
                interpolation_order = 1
                interpolation_order_z = 0
        else:
            force_separate_z = segmentation_export_kwargs['force_separate_z']
            interpolation_order = segmentation_export_kwargs['interpolation_order']
            interpolation_order_z = segmentation_export_kwargs['interpolation_order_z']

        output_folder = join(self.output_folder, validation_folder_name)
        maybe_mkdir_p(output_folder)

        if do_mirroring:
            mirror_axes = self.data_aug_params['mirror_axes']
        else:
            mirror_axes = ()

        pred_gt_tuples = []

        export_pool = Pool(2)
        results = []

        transpose_backward = self.plans.get('transpose_backward')

        for k in self.dataset_val.keys():
            properties = load_pickle(self.dataset[k]['properties_file'])
            data = np.load(self.dataset[k]['data_file'])['data']

            # concat segmentation of previous step
            seg_from_prev_stage = np.load(join(self.folder_with_segs_from_prev_stage,
                                               k + "_segFromPrevStage.npz"))['data'][None]

            print(data.shape)
            data[-1][data[-1] == -1] = 0
            data_for_net = np.concatenate((data[:-1], to_one_hot(seg_from_prev_stage[0], range(1, self.num_classes))))

            softmax_pred = self.predict_preprocessed_data_return_seg_and_softmax(data_for_net,
                                                                                 do_mirroring=do_mirroring,
                                                                                 mirror_axes=mirror_axes,
                                                                                 use_sliding_window=use_sliding_window,
                                                                                 step_size=step_size,
                                                                                 use_gaussian=use_gaussian,
                                                                                 all_in_gpu=all_in_gpu,
                                                                                 mixed_precision=self.fp16)[1]

            if transpose_backward is not None:
                transpose_backward = self.plans.get('transpose_backward')
                softmax_pred = softmax_pred.transpose([0] + [i + 1 for i in transpose_backward])

            fname = properties['list_of_data_files'][0].split("/")[-1][:-12]

            if save_softmax:
                softmax_fname = join(output_folder, fname + ".npz")
            else:
                softmax_fname = None

            """There is a problem with python process communication that prevents us from communicating obejcts 
            larger than 2 GB between processes (basically when the length of the pickle string that will be sent is 
            communicated by the multiprocessing.Pipe object then the placeholder (\%i I think) does not allow for long 
            enough strings (lol). This could be fixed by changing i to l (for long) but that would require manually 
            patching system python code. We circumvent that problem here by saving softmax_pred to a npy file that will 
            then be read (and finally deleted) by the Process. save_segmentation_nifti_from_softmax can take either 
            filename or np.ndarray and will handle this automatically"""
            if np.prod(softmax_pred.shape) > (2e9 / 4 * 0.85):  # *0.85 just to be save
                np.save(fname + ".npy", softmax_pred)
                softmax_pred = fname + ".npy"

            results.append(export_pool.starmap_async(save_segmentation_nifti_from_softmax,
                                                     ((softmax_pred, join(output_folder, fname + ".nii.gz"),
                                                       properties, interpolation_order, self.regions_class_order,
                                                       None, None,
                                                       softmax_fname, None, force_separate_z,
                                                       interpolation_order_z),
                                                      )
                                                     )
                           )

            pred_gt_tuples.append([join(output_folder, fname + ".nii.gz"),
                                   join(self.gt_niftis_folder, fname + ".nii.gz")])

        _ = [i.get() for i in results]

        task = self.dataset_directory.split("/")[-1]
        job_name = self.experiment_name
        _ = aggregate_scores(pred_gt_tuples, labels=list(range(self.num_classes)),
                             json_output_file=join(output_folder, "summary.json"), json_name=job_name,
                             json_author="Fabian", json_description="",
                             json_task=task)

        if run_postprocessing_on_folds:
            # in the old nnunet we would stop here. Now we add a postprocessing. This postprocessing can remove everything
            # except the largest connected component for each class. To see if this improves results, we do this for all
            # classes and then rerun the evaluation. Those classes for which this resulted in an improved dice score will
            # have this applied during inference as well
            self.print_to_log_file("determining postprocessing")
            determine_postprocessing(self.output_folder, self.gt_niftis_folder, validation_folder_name,
                                     final_subf_name=validation_folder_name + "_postprocessed", debug=debug)
            # after this the final predictions for the vlaidation set can be found in validation_folder_name_base + "_postprocessed"
            # They are always in that folder, even if no postprocessing as applied!

        # detemining postprocesing on a per-fold basis may be OK for this fold but what if another fold finds another
        # postprocesing to be better? In this case we need to consolidate. At the time the consolidation is going to be
        # done we won't know what self.gt_niftis_folder was, so now we copy all the niftis into a separate folder to
        # be used later
        gt_nifti_folder = join(self.output_folder_base, "gt_niftis")
        maybe_mkdir_p(gt_nifti_folder)
        for f in subfiles(self.gt_niftis_folder, suffix=".nii.gz"):
            success = False
            attempts = 0
            while not success and attempts < 10:
                try:
                    shutil.copy(f, gt_nifti_folder)
                    success = True
                except OSError:
                    attempts += 1
                    sleep(1)

        self.network.train(current_mode)
        export_pool.close()
        export_pool.join()