File size: 6,237 Bytes
ecf08bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#    Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


from copy import deepcopy

import numpy as np
from batchgenerators.utilities.file_and_folder_operations import *
import argparse
from nnunet.preprocessing.preprocessing import resample_data_or_seg
from batchgenerators.utilities.file_and_folder_operations import maybe_mkdir_p
import nnunet
from nnunet.run.default_configuration import get_default_configuration
from multiprocessing import Pool

from nnunet.training.model_restore import recursive_find_python_class
from nnunet.training.network_training.nnUNetTrainer import nnUNetTrainer


def resample_and_save(predicted, target_shape, output_file, force_separate_z=False,
                      interpolation_order=1, interpolation_order_z=0):
    if isinstance(predicted, str):
        assert isfile(predicted), "If isinstance(segmentation_softmax, str) then " \
                                  "isfile(segmentation_softmax) must be True"
        del_file = deepcopy(predicted)
        predicted = np.load(predicted)
        os.remove(del_file)

    predicted_new_shape = resample_data_or_seg(predicted, target_shape, False, order=interpolation_order,
                                               do_separate_z=force_separate_z, order_z=interpolation_order_z)
    seg_new_shape = predicted_new_shape.argmax(0)
    np.savez_compressed(output_file, data=seg_new_shape.astype(np.uint8))


def predict_next_stage(trainer, stage_to_be_predicted_folder):
    output_folder = join(pardir(trainer.output_folder), "pred_next_stage")
    maybe_mkdir_p(output_folder)

    if 'segmentation_export_params' in trainer.plans.keys():
        force_separate_z = trainer.plans['segmentation_export_params']['force_separate_z']
        interpolation_order = trainer.plans['segmentation_export_params']['interpolation_order']
        interpolation_order_z = trainer.plans['segmentation_export_params']['interpolation_order_z']
    else:
        force_separate_z = None
        interpolation_order = 1
        interpolation_order_z = 0

    export_pool = Pool(2)
    results = []

    for pat in trainer.dataset_val.keys():
        print(pat)
        data_file = trainer.dataset_val[pat]['data_file']
        data_preprocessed = np.load(data_file)['data'][:-1]

        predicted_probabilities = trainer.predict_preprocessed_data_return_seg_and_softmax(
            data_preprocessed, do_mirroring=trainer.data_aug_params["do_mirror"],
            mirror_axes=trainer.data_aug_params['mirror_axes'], mixed_precision=trainer.fp16)[1]

        data_file_nofolder = data_file.split("/")[-1]
        data_file_nextstage = join(stage_to_be_predicted_folder, data_file_nofolder)
        data_nextstage = np.load(data_file_nextstage)['data']
        target_shp = data_nextstage.shape[1:]
        output_file = join(output_folder, data_file_nextstage.split("/")[-1][:-4] + "_segFromPrevStage.npz")

        if np.prod(predicted_probabilities.shape) > (2e9 / 4 * 0.85):  # *0.85 just to be save
            np.save(output_file[:-4] + ".npy", predicted_probabilities)
            predicted_probabilities = output_file[:-4] + ".npy"

        results.append(export_pool.starmap_async(resample_and_save, [(predicted_probabilities, target_shp, output_file,
                                                                      force_separate_z, interpolation_order,
                                                                      interpolation_order_z)]))

    _ = [i.get() for i in results]
    export_pool.close()
    export_pool.join()


if __name__ == "__main__":
    """
    RUNNING THIS SCRIPT MANUALLY IS USUALLY NOT NECESSARY. USE THE run_training.py FILE!
    
    This script is intended for predicting all the low resolution predictions of 3d_lowres for the next stage of the 
    cascade. It needs to run once for each fold so that the segmentation is only generated for the validation set 
    and not on the data the network was trained on. Run it with
    python predict_next_stage TRAINERCLASS TASK FOLD"""

    parser = argparse.ArgumentParser()
    parser.add_argument("network_trainer")
    parser.add_argument("task")
    parser.add_argument("fold", type=int)

    args = parser.parse_args()

    trainerclass = args.network_trainer
    task = args.task
    fold = args.fold

    plans_file, folder_with_preprocessed_data, output_folder_name, dataset_directory, batch_dice, stage = \
        get_default_configuration("3d_lowres", task)

    trainer_class = recursive_find_python_class([join(nnunet.__path__[0], "training", "network_training")],
                                                trainerclass,
                                                "nnunet.training.network_training")

    if trainer_class is None:
        raise RuntimeError("Could not find trainer class in nnunet.training.network_training")
    else:
        assert issubclass(trainer_class,
                          nnUNetTrainer), "network_trainer was found but is not derived from nnUNetTrainer"

    trainer = trainer_class(plans_file, fold, folder_with_preprocessed_data, output_folder=output_folder_name,
                            dataset_directory=dataset_directory, batch_dice=batch_dice, stage=stage)

    trainer.initialize(False)
    trainer.load_dataset()
    trainer.do_split()
    trainer.load_best_checkpoint(train=False)

    stage_to_be_predicted_folder = join(dataset_directory, trainer.plans['data_identifier'] + "_stage%d" % 1)
    output_folder = join(pardir(trainer.output_folder), "pred_next_stage")
    maybe_mkdir_p(output_folder)

    predict_next_stage(trainer, stage_to_be_predicted_folder)