File size: 45,823 Bytes
ecf08bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 |
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
from copy import deepcopy
from batchgenerators.augmentations.utils import resize_segmentation
from nnunet.configuration import default_num_threads, RESAMPLING_SEPARATE_Z_ANISO_THRESHOLD
from nnunet.preprocessing.cropping import get_case_identifier_from_npz, ImageCropper
from skimage.transform import resize
from scipy.ndimage.interpolation import map_coordinates
import numpy as np
from batchgenerators.utilities.file_and_folder_operations import *
from multiprocessing.pool import Pool
def get_do_separate_z(spacing, anisotropy_threshold=RESAMPLING_SEPARATE_Z_ANISO_THRESHOLD):
do_separate_z = (np.max(spacing) / np.min(spacing)) > anisotropy_threshold
return do_separate_z
def get_lowres_axis(new_spacing):
axis = np.where(max(new_spacing) / np.array(new_spacing) == 1)[0] # find which axis is anisotropic
return axis
def resample_patient(data, seg, original_spacing, target_spacing, order_data=3, order_seg=0, force_separate_z=False,
order_z_data=0, order_z_seg=0,
separate_z_anisotropy_threshold=RESAMPLING_SEPARATE_Z_ANISO_THRESHOLD):
"""
:param data:
:param seg:
:param original_spacing:
:param target_spacing:
:param order_data:
:param order_seg:
:param force_separate_z: if None then we dynamically decide how to resample along z, if True/False then always
/never resample along z separately
:param order_z_seg: only applies if do_separate_z is True
:param order_z_data: only applies if do_separate_z is True
:param separate_z_anisotropy_threshold: if max_spacing > separate_z_anisotropy_threshold * min_spacing (per axis)
then resample along lowres axis with order_z_data/order_z_seg instead of order_data/order_seg
:return:
"""
assert not ((data is None) and (seg is None))
if data is not None:
assert len(data.shape) == 4, "data must be c x y z"
if seg is not None:
assert len(seg.shape) == 4, "seg must be c x y z"
if data is not None:
shape = np.array(data[0].shape)
else:
shape = np.array(seg[0].shape)
new_shape = np.round(((np.array(original_spacing) / np.array(target_spacing)).astype(float) * shape)).astype(int)
if force_separate_z is not None:
do_separate_z = force_separate_z
if force_separate_z:
axis = get_lowres_axis(original_spacing)
else:
axis = None
else:
if get_do_separate_z(original_spacing, separate_z_anisotropy_threshold):
do_separate_z = True
axis = get_lowres_axis(original_spacing)
elif get_do_separate_z(target_spacing, separate_z_anisotropy_threshold):
do_separate_z = True
axis = get_lowres_axis(target_spacing)
else:
do_separate_z = False
axis = None
if axis is not None:
if len(axis) == 3:
# every axis has the spacing, this should never happen, why is this code here?
do_separate_z = False
elif len(axis) == 2:
# this happens for spacings like (0.24, 1.25, 1.25) for example. In that case we do not want to resample
# separately in the out of plane axis
do_separate_z = False
else:
pass
if data is not None:
data_reshaped = resample_data_or_seg(data, new_shape, False, axis, order_data, do_separate_z,
order_z=order_z_data)
else:
data_reshaped = None
if seg is not None:
seg_reshaped = resample_data_or_seg(seg, new_shape, True, axis, order_seg, do_separate_z, order_z=order_z_seg)
else:
seg_reshaped = None
return data_reshaped, seg_reshaped
def resample_data_or_seg(data, new_shape, is_seg, axis=None, order=3, do_separate_z=False, order_z=0):
"""
separate_z=True will resample with order 0 along z
:param data:
:param new_shape:
:param is_seg:
:param axis:
:param order:
:param do_separate_z:
:param cval:
:param order_z: only applies if do_separate_z is True
:return:
"""
assert len(data.shape) == 4, "data must be (c, x, y, z)"
if is_seg:
resize_fn = resize_segmentation
kwargs = OrderedDict()
else:
resize_fn = resize
kwargs = {'mode': 'edge', 'anti_aliasing': False}
dtype_data = data.dtype
shape = np.array(data[0].shape)
new_shape = np.array(new_shape)
if np.any(shape != new_shape):
data = data.astype(float)
if do_separate_z:
print("separate z, order in z is", order_z, "order inplane is", order)
assert len(axis) == 1, "only one anisotropic axis supported"
axis = axis[0]
if axis == 0:
new_shape_2d = new_shape[1:]
elif axis == 1:
new_shape_2d = new_shape[[0, 2]]
else:
new_shape_2d = new_shape[:-1]
reshaped_final_data = []
for c in range(data.shape[0]):
reshaped_data = []
for slice_id in range(shape[axis]):
if axis == 0:
reshaped_data.append(resize_fn(data[c, slice_id], new_shape_2d, order, **kwargs))
elif axis == 1:
reshaped_data.append(resize_fn(data[c, :, slice_id], new_shape_2d, order, **kwargs))
else:
reshaped_data.append(resize_fn(data[c, :, :, slice_id], new_shape_2d, order,
**kwargs))
reshaped_data = np.stack(reshaped_data, axis)
if shape[axis] != new_shape[axis]:
# The following few lines are blatantly copied and modified from sklearn's resize()
rows, cols, dim = new_shape[0], new_shape[1], new_shape[2]
orig_rows, orig_cols, orig_dim = reshaped_data.shape
row_scale = float(orig_rows) / rows
col_scale = float(orig_cols) / cols
dim_scale = float(orig_dim) / dim
map_rows, map_cols, map_dims = np.mgrid[:rows, :cols, :dim]
map_rows = row_scale * (map_rows + 0.5) - 0.5
map_cols = col_scale * (map_cols + 0.5) - 0.5
map_dims = dim_scale * (map_dims + 0.5) - 0.5
coord_map = np.array([map_rows, map_cols, map_dims])
if not is_seg or order_z == 0:
reshaped_final_data.append(map_coordinates(reshaped_data, coord_map, order=order_z,
mode='nearest')[None])
else:
unique_labels = np.unique(reshaped_data)
reshaped = np.zeros(new_shape, dtype=dtype_data)
for i, cl in enumerate(unique_labels):
reshaped_multihot = np.round(
map_coordinates((reshaped_data == cl).astype(float), coord_map, order=order_z,
mode='nearest'))
reshaped[reshaped_multihot > 0.5] = cl
reshaped_final_data.append(reshaped[None])
else:
reshaped_final_data.append(reshaped_data[None])
reshaped_final_data = np.vstack(reshaped_final_data)
else:
print("no separate z, order", order)
reshaped = []
for c in range(data.shape[0]):
reshaped.append(resize_fn(data[c], new_shape, order, **kwargs)[None])
reshaped_final_data = np.vstack(reshaped)
return reshaped_final_data.astype(dtype_data)
else:
print("no resampling necessary")
return data
class GenericPreprocessor(object):
def __init__(self, normalization_scheme_per_modality, use_nonzero_mask, transpose_forward: (tuple, list), intensityproperties=None):
"""
:param normalization_scheme_per_modality: dict {0:'nonCT'}
:param use_nonzero_mask: {0:False}
:param intensityproperties:
"""
self.transpose_forward = transpose_forward
self.intensityproperties = intensityproperties
self.normalization_scheme_per_modality = normalization_scheme_per_modality
self.use_nonzero_mask = use_nonzero_mask
self.resample_separate_z_anisotropy_threshold = RESAMPLING_SEPARATE_Z_ANISO_THRESHOLD
@staticmethod
def load_cropped(cropped_output_dir, case_identifier):
all_data = np.load(os.path.join(cropped_output_dir, "%s.npz" % case_identifier))['data']
# TODO this is hardcoded does not work for 3D data
data = all_data[:1].astype(np.float32)
seg = all_data[1:]
with open(os.path.join(cropped_output_dir, "%s.pkl" % case_identifier), 'rb') as f:
properties = pickle.load(f)
return data, seg, properties
def resample_and_normalize(self, data, target_spacing, properties, seg=None, force_separate_z=None):
"""
data and seg must already have been transposed by transpose_forward. properties are the un-transposed values
(spacing etc)
:param data:
:param target_spacing:
:param properties:
:param seg:
:param force_separate_z:
:return:
"""
# target_spacing is already transposed, properties["original_spacing"] is not so we need to transpose it!
# data, seg are already transposed. Double check this using the properties
original_spacing_transposed = np.array(properties["original_spacing"])[self.transpose_forward]
before = {
'spacing': properties["original_spacing"],
'spacing_transposed': original_spacing_transposed,
'data.shape (data is transposed)': data.shape
}
# remove nans
data[np.isnan(data)] = 0
data, seg = resample_patient(data, seg, np.array(original_spacing_transposed), target_spacing, 3, 1,
force_separate_z=force_separate_z, order_z_data=0, order_z_seg=0,
separate_z_anisotropy_threshold=self.resample_separate_z_anisotropy_threshold)
after = {
'spacing': target_spacing,
'data.shape (data is resampled)': data.shape
}
print("before:", before, "\nafter: ", after, "\n")
if seg is not None: # hippocampus 243 has one voxel with -2 as label. wtf?
seg[seg < -1] = 0
properties["size_after_resampling"] = data[0].shape
properties["spacing_after_resampling"] = target_spacing
use_nonzero_mask = self.use_nonzero_mask
assert len(self.normalization_scheme_per_modality) == len(data), "self.normalization_scheme_per_modality " \
"must have as many entries as data has " \
"modalities"
assert len(self.use_nonzero_mask) == len(data), "self.use_nonzero_mask must have as many entries as data" \
" has modalities"
for c in range(len(data)):
scheme = self.normalization_scheme_per_modality[c]
if scheme == "CT":
# clip to lb and ub from train data foreground and use foreground mn and sd from training data
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
mean_intensity = self.intensityproperties[c]['mean']
std_intensity = self.intensityproperties[c]['sd']
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
data[c] = np.clip(data[c], lower_bound, upper_bound)
data[c] = (data[c] - mean_intensity) / std_intensity
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == "CT2":
# clip to lb and ub from train data foreground, use mn and sd form each case for normalization
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
mask = (data[c] > lower_bound) & (data[c] < upper_bound)
data[c] = np.clip(data[c], lower_bound, upper_bound)
mn = data[c][mask].mean()
sd = data[c][mask].std()
data[c] = (data[c] - mn) / sd
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == 'noNorm':
pass
else:
if use_nonzero_mask[c]:
mask = seg[-1] >= 0
data[c][mask] = (data[c][mask] - data[c][mask].mean()) / (data[c][mask].std() + 1e-8)
data[c][mask == 0] = 0
else:
mn = data[c].mean()
std = data[c].std()
# print(data[c].shape, data[c].dtype, mn, std)
data[c] = (data[c] - mn) / (std + 1e-8)
return data, seg, properties
def preprocess_test_case(self, data_files, target_spacing, seg_file=None, force_separate_z=None):
data, seg, properties = ImageCropper.crop_from_list_of_files(data_files, seg_file)
data = data.transpose((0, *[i + 1 for i in self.transpose_forward]))
if not isinstance(seg, type(None)):
seg = seg.transpose((0, *[i + 1 for i in self.transpose_forward]))
data, seg, properties = self.resample_and_normalize(data, target_spacing, properties, seg,
force_separate_z=force_separate_z)
return data.astype(np.float32), seg, properties
def _run_internal(self, target_spacing, case_identifier, output_folder_stage, cropped_output_dir, force_separate_z,
all_classes):
data, seg, properties = self.load_cropped(cropped_output_dir, case_identifier)
data = data.transpose((0, *[i + 1 for i in self.transpose_forward]))
seg = seg.transpose((0, *[i + 1 for i in self.transpose_forward]))
data, seg, properties = self.resample_and_normalize(data, target_spacing,
properties, seg, force_separate_z)
all_data = np.vstack((data, seg)).astype(np.float32)
# we need to find out where the classes are and sample some random locations
# let's do 10.000 samples per class
# seed this for reproducibility!
num_samples = 10000
min_percent_coverage = 0.01 # at least 1% of the class voxels need to be selected, otherwise it may be too sparse
rndst = np.random.RandomState(1234)
class_locs = {}
# TODO add second label (DONE)
for i, labels in enumerate(all_classes):
if not bool(labels):
continue
class_locs[i] = {}
for c in labels:
all_locs = np.argwhere(all_data[1+i] == c)
if len(all_locs) == 0:
class_locs[c] = []
continue
target_num_samples = min(num_samples, len(all_locs))
target_num_samples = max(target_num_samples, int(np.ceil(len(all_locs) * min_percent_coverage)))
selected = all_locs[rndst.choice(len(all_locs), target_num_samples, replace=False)]
class_locs[i][c] = selected
print(c, target_num_samples)
properties['class_locations'] = class_locs
print("saving: ", os.path.join(output_folder_stage, "%s.npz" % case_identifier))
np.savez_compressed(os.path.join(output_folder_stage, "%s.npz" % case_identifier),
data=all_data.astype(np.float32))
with open(os.path.join(output_folder_stage, "%s.pkl" % case_identifier), 'wb') as f:
pickle.dump(properties, f)
def run(self, target_spacings, input_folder_with_cropped_npz, output_folder, data_identifier,
num_threads=default_num_threads, force_separate_z=None):
"""
:param target_spacings: list of lists [[1.25, 1.25, 5]]
:param input_folder_with_cropped_npz: dim: c, x, y, z | npz_file['data'] np.savez_compressed(fname.npz, data=arr)
:param output_folder:
:param num_threads:
:param force_separate_z: None
:return:
"""
print("Initializing to run preprocessing")
print("npz folder:", input_folder_with_cropped_npz)
print("output_folder:", output_folder)
list_of_cropped_npz_files = subfiles(input_folder_with_cropped_npz, True, None, ".npz", True)
maybe_mkdir_p(output_folder)
num_stages = len(target_spacings)
if not isinstance(num_threads, (list, tuple, np.ndarray)):
num_threads = [num_threads] * num_stages
assert len(num_threads) == num_stages
# we need to know which classes are present in this dataset so that we can precompute where these classes are
# located. This is needed for oversampling foreground
all_classes = load_pickle(join(input_folder_with_cropped_npz, 'dataset_properties.pkl'))['all_classes']
for i in range(num_stages):
all_args = []
output_folder_stage = os.path.join(output_folder, data_identifier + "_stage%d" % i)
maybe_mkdir_p(output_folder_stage)
spacing = target_spacings[i]
for j, case in enumerate(list_of_cropped_npz_files):
case_identifier = get_case_identifier_from_npz(case)
args = spacing, case_identifier, output_folder_stage, input_folder_with_cropped_npz, force_separate_z, all_classes
all_args.append(args)
p = Pool(num_threads[i])
p.starmap(self._run_internal, all_args)
p.close()
p.join()
class Preprocessor3DDifferentResampling(GenericPreprocessor):
def resample_and_normalize(self, data, target_spacing, properties, seg=None, force_separate_z=None):
"""
data and seg must already have been transposed by transpose_forward. properties are the un-transposed values
(spacing etc)
:param data:
:param target_spacing:
:param properties:
:param seg:
:param force_separate_z:
:return:
"""
# target_spacing is already transposed, properties["original_spacing"] is not so we need to transpose it!
# data, seg are already transposed. Double check this using the properties
original_spacing_transposed = np.array(properties["original_spacing"])[self.transpose_forward]
before = {
'spacing': properties["original_spacing"],
'spacing_transposed': original_spacing_transposed,
'data.shape (data is transposed)': data.shape
}
# remove nans
data[np.isnan(data)] = 0
data, seg = resample_patient(data, seg, np.array(original_spacing_transposed), target_spacing, 3, 1,
force_separate_z=force_separate_z, order_z_data=3, order_z_seg=1,
separate_z_anisotropy_threshold=self.resample_separate_z_anisotropy_threshold)
after = {
'spacing': target_spacing,
'data.shape (data is resampled)': data.shape
}
print("before:", before, "\nafter: ", after, "\n")
if seg is not None: # hippocampus 243 has one voxel with -2 as label. wtf?
seg[seg < -1] = 0
properties["size_after_resampling"] = data[0].shape
properties["spacing_after_resampling"] = target_spacing
use_nonzero_mask = self.use_nonzero_mask
assert len(self.normalization_scheme_per_modality) == len(data), "self.normalization_scheme_per_modality " \
"must have as many entries as data has " \
"modalities"
assert len(self.use_nonzero_mask) == len(data), "self.use_nonzero_mask must have as many entries as data" \
" has modalities"
for c in range(len(data)):
scheme = self.normalization_scheme_per_modality[c]
if scheme == "CT":
# clip to lb and ub from train data foreground and use foreground mn and sd from training data
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
mean_intensity = self.intensityproperties[c]['mean']
std_intensity = self.intensityproperties[c]['sd']
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
data[c] = np.clip(data[c], lower_bound, upper_bound)
data[c] = (data[c] - mean_intensity) / std_intensity
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == "CT2":
# clip to lb and ub from train data foreground, use mn and sd form each case for normalization
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
mask = (data[c] > lower_bound) & (data[c] < upper_bound)
data[c] = np.clip(data[c], lower_bound, upper_bound)
mn = data[c][mask].mean()
sd = data[c][mask].std()
data[c] = (data[c] - mn) / sd
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == 'noNorm':
pass
else:
if use_nonzero_mask[c]:
mask = seg[-1] >= 0
else:
mask = np.ones(seg.shape[1:], dtype=bool)
data[c][mask] = (data[c][mask] - data[c][mask].mean()) / (data[c][mask].std() + 1e-8)
data[c][mask == 0] = 0
return data, seg, properties
class Preprocessor3DBetterResampling(GenericPreprocessor):
"""
This preprocessor always uses force_separate_z=False. It does resampling to the target spacing with third
order spline for data (just like GenericPreprocessor) and seg (unlike GenericPreprocessor). It never does separate
resampling in z.
"""
def resample_and_normalize(self, data, target_spacing, properties, seg=None, force_separate_z=False):
"""
data and seg must already have been transposed by transpose_forward. properties are the un-transposed values
(spacing etc)
:param data:
:param target_spacing:
:param properties:
:param seg:
:param force_separate_z:
:return:
"""
if force_separate_z is not False:
print("WARNING: Preprocessor3DBetterResampling always uses force_separate_z=False. "
"You specified %s. Your choice is overwritten" % str(force_separate_z))
force_separate_z = False
# be safe
assert force_separate_z is False
# target_spacing is already transposed, properties["original_spacing"] is not so we need to transpose it!
# data, seg are already transposed. Double check this using the properties
original_spacing_transposed = np.array(properties["original_spacing"])[self.transpose_forward]
before = {
'spacing': properties["original_spacing"],
'spacing_transposed': original_spacing_transposed,
'data.shape (data is transposed)': data.shape
}
# remove nans
data[np.isnan(data)] = 0
data, seg = resample_patient(data, seg, np.array(original_spacing_transposed), target_spacing, 3, 3,
force_separate_z=force_separate_z, order_z_data=99999, order_z_seg=99999,
separate_z_anisotropy_threshold=self.resample_separate_z_anisotropy_threshold)
after = {
'spacing': target_spacing,
'data.shape (data is resampled)': data.shape
}
print("before:", before, "\nafter: ", after, "\n")
if seg is not None: # hippocampus 243 has one voxel with -2 as label. wtf?
seg[seg < -1] = 0
properties["size_after_resampling"] = data[0].shape
properties["spacing_after_resampling"] = target_spacing
use_nonzero_mask = self.use_nonzero_mask
assert len(self.normalization_scheme_per_modality) == len(data), "self.normalization_scheme_per_modality " \
"must have as many entries as data has " \
"modalities"
assert len(self.use_nonzero_mask) == len(data), "self.use_nonzero_mask must have as many entries as data" \
" has modalities"
for c in range(len(data)):
scheme = self.normalization_scheme_per_modality[c]
if scheme == "CT":
# clip to lb and ub from train data foreground and use foreground mn and sd from training data
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
mean_intensity = self.intensityproperties[c]['mean']
std_intensity = self.intensityproperties[c]['sd']
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
data[c] = np.clip(data[c], lower_bound, upper_bound)
data[c] = (data[c] - mean_intensity) / std_intensity
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == "CT2":
# clip to lb and ub from train data foreground, use mn and sd form each case for normalization
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
mask = (data[c] > lower_bound) & (data[c] < upper_bound)
data[c] = np.clip(data[c], lower_bound, upper_bound)
mn = data[c][mask].mean()
sd = data[c][mask].std()
data[c] = (data[c] - mn) / sd
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == 'noNorm':
pass
else:
if use_nonzero_mask[c]:
mask = seg[-1] >= 0
else:
mask = np.ones(seg.shape[1:], dtype=bool)
data[c][mask] = (data[c][mask] - data[c][mask].mean()) / (data[c][mask].std() + 1e-8)
data[c][mask == 0] = 0
return data, seg, properties
class PreprocessorFor2D(GenericPreprocessor):
def __init__(self, normalization_scheme_per_modality, use_nonzero_mask, transpose_forward: (tuple, list), intensityproperties=None):
super(PreprocessorFor2D, self).__init__(normalization_scheme_per_modality, use_nonzero_mask,
transpose_forward, intensityproperties)
def run(self, target_spacings, input_folder_with_cropped_npz, output_folder, data_identifier,
num_threads=default_num_threads, force_separate_z=None):
print("Initializing to run preprocessing")
print("npz folder:", input_folder_with_cropped_npz)
print("output_folder:", output_folder)
list_of_cropped_npz_files = subfiles(input_folder_with_cropped_npz, True, None, ".npz", True)
assert len(list_of_cropped_npz_files) != 0, "set list of files first"
maybe_mkdir_p(output_folder)
all_args = []
num_stages = len(target_spacings)
# we need to know which classes are present in this dataset so that we can precompute where these classes are
# located. This is needed for oversampling foreground
all_classes = load_pickle(join(input_folder_with_cropped_npz, 'dataset_properties.pkl'))['all_classes']
for i in range(num_stages):
output_folder_stage = os.path.join(output_folder, data_identifier + "_stage%d" % i)
maybe_mkdir_p(output_folder_stage)
spacing = target_spacings[i]
for j, case in enumerate(list_of_cropped_npz_files):
case_identifier = get_case_identifier_from_npz(case)
args = spacing, case_identifier, output_folder_stage, input_folder_with_cropped_npz, force_separate_z, all_classes
all_args.append(args)
"""
self._run_internal(spacing, case_identifier, output_folder_stage, input_folder_with_cropped_npz, force_separate_z, all_classes)
"""
p = Pool(num_threads)
p.starmap(self._run_internal, all_args)
p.close()
p.join()
def resample_and_normalize(self, data, target_spacing, properties, seg=None, force_separate_z=None):
original_spacing_transposed = np.array(properties["original_spacing"])[self.transpose_forward]
before = {
'spacing': properties["original_spacing"],
'spacing_transposed': original_spacing_transposed,
'data.shape (data is transposed)': data.shape
}
target_spacing[0] = original_spacing_transposed[0]
data, seg = resample_patient(data, seg, np.array(original_spacing_transposed), target_spacing, 3, 1,
force_separate_z=force_separate_z, order_z_data=0, order_z_seg=0,
separate_z_anisotropy_threshold=self.resample_separate_z_anisotropy_threshold)
after = {
'spacing': target_spacing,
'data.shape (data is resampled)': data.shape
}
print("before:", before, "\nafter: ", after, "\n")
if seg is not None: # hippocampus 243 has one voxel with -2 as label. wtf?
seg[seg < -1] = 0
properties["size_after_resampling"] = data[0].shape
properties["spacing_after_resampling"] = target_spacing
use_nonzero_mask = self.use_nonzero_mask
assert len(self.normalization_scheme_per_modality) == len(data), "self.normalization_scheme_per_modality " \
"must have as many entries as data has " \
"modalities"
assert len(self.use_nonzero_mask) == len(data), "self.use_nonzero_mask must have as many entries as data" \
" has modalities"
print("normalization...")
for c in range(len(data)):
scheme = self.normalization_scheme_per_modality[c]
if scheme == "CT":
# clip to lb and ub from train data foreground and use foreground mn and sd from training data
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
mean_intensity = self.intensityproperties[c]['mean']
std_intensity = self.intensityproperties[c]['sd']
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
data[c] = np.clip(data[c], lower_bound, upper_bound)
data[c] = (data[c] - mean_intensity) / std_intensity
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == "CT2":
# clip to lb and ub from train data foreground, use mn and sd form each case for normalization
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
mask = (data[c] > lower_bound) & (data[c] < upper_bound)
data[c] = np.clip(data[c], lower_bound, upper_bound)
mn = data[c][mask].mean()
sd = data[c][mask].std()
data[c] = (data[c] - mn) / sd
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == 'noNorm':
pass
else:
if use_nonzero_mask[c]:
mask = seg[-1] >= 0
else:
if seg is not None:
mask = np.ones(seg.shape[1:], dtype=bool)
else:
mask = np.ones(data[c].shape, dtype=bool)
data[c][mask] = (data[c][mask] - data[c][mask].mean()) / (data[c][mask].std() + 1e-8)
data[c][mask == 0] = 0
print("normalization done")
return data, seg, properties
class PreprocessorFor3D_LeaveOriginalZSpacing(GenericPreprocessor):
"""
3d_lowres and 3d_fullres are not resampled along z!
"""
def resample_and_normalize(self, data, target_spacing, properties, seg=None, force_separate_z=None):
"""
if target_spacing[0] is None or nan we use original_spacing_transposed[0] (no resampling along z)
:param data:
:param target_spacing:
:param properties:
:param seg:
:param force_separate_z:
:return:
"""
original_spacing_transposed = np.array(properties["original_spacing"])[self.transpose_forward]
before = {
'spacing': properties["original_spacing"],
'spacing_transposed': original_spacing_transposed,
'data.shape (data is transposed)': data.shape
}
# remove nans
data[np.isnan(data)] = 0
target_spacing = deepcopy(target_spacing)
if target_spacing[0] is None or np.isnan(target_spacing[0]):
target_spacing[0] = original_spacing_transposed[0]
#print(target_spacing, original_spacing_transposed)
data, seg = resample_patient(data, seg, np.array(original_spacing_transposed), target_spacing, 3, 1,
force_separate_z=force_separate_z, order_z_data=0, order_z_seg=0,
separate_z_anisotropy_threshold=self.resample_separate_z_anisotropy_threshold)
after = {
'spacing': target_spacing,
'data.shape (data is resampled)': data.shape
}
st = "before:" + str(before) + '\nafter' + str(after) + "\n"
print(st)
if seg is not None: # hippocampus 243 has one voxel with -2 as label. wtf?
seg[seg < -1] = 0
properties["size_after_resampling"] = data[0].shape
properties["spacing_after_resampling"] = target_spacing
use_nonzero_mask = self.use_nonzero_mask
assert len(self.normalization_scheme_per_modality) == len(data), "self.normalization_scheme_per_modality " \
"must have as many entries as data has " \
"modalities"
assert len(self.use_nonzero_mask) == len(data), "self.use_nonzero_mask must have as many entries as data" \
" has modalities"
for c in range(len(data)):
scheme = self.normalization_scheme_per_modality[c]
if scheme == "CT":
# clip to lb and ub from train data foreground and use foreground mn and sd from training data
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
mean_intensity = self.intensityproperties[c]['mean']
std_intensity = self.intensityproperties[c]['sd']
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
data[c] = np.clip(data[c], lower_bound, upper_bound)
data[c] = (data[c] - mean_intensity) / std_intensity
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == "CT2":
# clip to lb and ub from train data foreground, use mn and sd form each case for normalization
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
mask = (data[c] > lower_bound) & (data[c] < upper_bound)
data[c] = np.clip(data[c], lower_bound, upper_bound)
mn = data[c][mask].mean()
sd = data[c][mask].std()
data[c] = (data[c] - mn) / sd
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == 'noNorm':
pass
else:
if use_nonzero_mask[c]:
mask = seg[-1] >= 0
else:
mask = np.ones(seg.shape[1:], dtype=bool)
data[c][mask] = (data[c][mask] - data[c][mask].mean()) / (data[c][mask].std() + 1e-8)
data[c][mask == 0] = 0
return data, seg, properties
def run(self, target_spacings, input_folder_with_cropped_npz, output_folder, data_identifier,
num_threads=default_num_threads, force_separate_z=None):
for i in range(len(target_spacings)):
target_spacings[i][0] = None
super().run(target_spacings, input_folder_with_cropped_npz, output_folder, data_identifier,
default_num_threads, force_separate_z)
class PreprocessorFor3D_NoResampling(GenericPreprocessor):
def resample_and_normalize(self, data, target_spacing, properties, seg=None, force_separate_z=None):
"""
if target_spacing[0] is None or nan we use original_spacing_transposed[0] (no resampling along z)
:param data:
:param target_spacing:
:param properties:
:param seg:
:param force_separate_z:
:return:
"""
original_spacing_transposed = np.array(properties["original_spacing"])[self.transpose_forward]
before = {
'spacing': properties["original_spacing"],
'spacing_transposed': original_spacing_transposed,
'data.shape (data is transposed)': data.shape
}
# remove nans
data[np.isnan(data)] = 0
target_spacing = deepcopy(original_spacing_transposed)
#print(target_spacing, original_spacing_transposed)
data, seg = resample_patient(data, seg, np.array(original_spacing_transposed), target_spacing, 3, 1,
force_separate_z=force_separate_z, order_z_data=0, order_z_seg=0,
separate_z_anisotropy_threshold=self.resample_separate_z_anisotropy_threshold)
after = {
'spacing': target_spacing,
'data.shape (data is resampled)': data.shape
}
st = "before:" + str(before) + '\nafter' + str(after) + "\n"
print(st)
if seg is not None: # hippocampus 243 has one voxel with -2 as label. wtf?
seg[seg < -1] = 0
properties["size_after_resampling"] = data[0].shape
properties["spacing_after_resampling"] = target_spacing
use_nonzero_mask = self.use_nonzero_mask
assert len(self.normalization_scheme_per_modality) == len(data), "self.normalization_scheme_per_modality " \
"must have as many entries as data has " \
"modalities"
assert len(self.use_nonzero_mask) == len(data), "self.use_nonzero_mask must have as many entries as data" \
" has modalities"
for c in range(len(data)):
scheme = self.normalization_scheme_per_modality[c]
if scheme == "CT":
# clip to lb and ub from train data foreground and use foreground mn and sd from training data
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
mean_intensity = self.intensityproperties[c]['mean']
std_intensity = self.intensityproperties[c]['sd']
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
data[c] = np.clip(data[c], lower_bound, upper_bound)
data[c] = (data[c] - mean_intensity) / std_intensity
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == "CT2":
# clip to lb and ub from train data foreground, use mn and sd form each case for normalization
assert self.intensityproperties is not None, "ERROR: if there is a CT then we need intensity properties"
lower_bound = self.intensityproperties[c]['percentile_00_5']
upper_bound = self.intensityproperties[c]['percentile_99_5']
mask = (data[c] > lower_bound) & (data[c] < upper_bound)
data[c] = np.clip(data[c], lower_bound, upper_bound)
mn = data[c][mask].mean()
sd = data[c][mask].std()
data[c] = (data[c] - mn) / sd
if use_nonzero_mask[c]:
data[c][seg[-1] < 0] = 0
elif scheme == 'noNorm':
pass
else:
if use_nonzero_mask[c]:
mask = seg[-1] >= 0
else:
mask = np.ones(seg.shape[1:], dtype=bool)
data[c][mask] = (data[c][mask] - data[c][mask].mean()) / (data[c][mask].std() + 1e-8)
data[c][mask == 0] = 0
return data, seg, properties
class PreprocessorFor2D_noNormalization(GenericPreprocessor):
def resample_and_normalize(self, data, target_spacing, properties, seg=None, force_separate_z=None):
original_spacing_transposed = np.array(properties["original_spacing"])[self.transpose_forward]
before = {
'spacing': properties["original_spacing"],
'spacing_transposed': original_spacing_transposed,
'data.shape (data is transposed)': data.shape
}
target_spacing[0] = original_spacing_transposed[0]
data, seg = resample_patient(data, seg, np.array(original_spacing_transposed), target_spacing, 3, 1,
force_separate_z=force_separate_z, order_z_data=0, order_z_seg=0,
separate_z_anisotropy_threshold=self.resample_separate_z_anisotropy_threshold)
after = {
'spacing': target_spacing,
'data.shape (data is resampled)': data.shape
}
print("before:", before, "\nafter: ", after, "\n")
if seg is not None: # hippocampus 243 has one voxel with -2 as label. wtf?
seg[seg < -1] = 0
properties["size_after_resampling"] = data[0].shape
properties["spacing_after_resampling"] = target_spacing
use_nonzero_mask = self.use_nonzero_mask
assert len(self.normalization_scheme_per_modality) == len(data), "self.normalization_scheme_per_modality " \
"must have as many entries as data has " \
"modalities"
assert len(self.use_nonzero_mask) == len(data), "self.use_nonzero_mask must have as many entries as data" \
" has modalities"
return data, seg, properties |