File size: 13,031 Bytes
ecf08bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
#    Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

import numpy as np
from medpy import metric


def assert_shape(test, reference):

    assert test.shape == reference.shape, "Shape mismatch: {} and {}".format(
        test.shape, reference.shape)


class ConfusionMatrix:

    def __init__(self, test=None, reference=None):

        self.tp = None
        self.fp = None
        self.tn = None
        self.fn = None
        self.size = None
        self.reference_empty = None
        self.reference_full = None
        self.test_empty = None
        self.test_full = None
        self.set_reference(reference)
        self.set_test(test)

    def set_test(self, test):

        self.test = test
        self.reset()

    def set_reference(self, reference):

        self.reference = reference
        self.reset()

    def reset(self):

        self.tp = None
        self.fp = None
        self.tn = None
        self.fn = None
        self.size = None
        self.test_empty = None
        self.test_full = None
        self.reference_empty = None
        self.reference_full = None

    def compute(self):

        if self.test is None or self.reference is None:
            raise ValueError("'test' and 'reference' must both be set to compute confusion matrix.")

        assert_shape(self.test, self.reference)

        self.tp = int(((self.test != 0) * (self.reference != 0)).sum())
        self.fp = int(((self.test != 0) * (self.reference == 0)).sum())
        self.tn = int(((self.test == 0) * (self.reference == 0)).sum())
        self.fn = int(((self.test == 0) * (self.reference != 0)).sum())
        self.size = int(np.prod(self.reference.shape, dtype=np.int64))
        self.test_empty = not np.any(self.test)
        self.test_full = np.all(self.test)
        self.reference_empty = not np.any(self.reference)
        self.reference_full = np.all(self.reference)

    def get_matrix(self):

        for entry in (self.tp, self.fp, self.tn, self.fn):
            if entry is None:
                self.compute()
                break

        return self.tp, self.fp, self.tn, self.fn

    def get_size(self):

        if self.size is None:
            self.compute()
        return self.size

    def get_existence(self):

        for case in (self.test_empty, self.test_full, self.reference_empty, self.reference_full):
            if case is None:
                self.compute()
                break

        return self.test_empty, self.test_full, self.reference_empty, self.reference_full


def dice(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
    """2TP / (2TP + FP + FN)"""

    if confusion_matrix is None:
        confusion_matrix = ConfusionMatrix(test, reference)

    tp, fp, tn, fn = confusion_matrix.get_matrix()
    test_empty, test_full, reference_empty, reference_full = confusion_matrix.get_existence()

    if test_empty and reference_empty:
        if nan_for_nonexisting:
            return float("NaN")
        else:
            return 0.

    return float(2. * tp / (2 * tp + fp + fn))


def jaccard(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
    """TP / (TP + FP + FN)"""

    if confusion_matrix is None:
        confusion_matrix = ConfusionMatrix(test, reference)

    tp, fp, tn, fn = confusion_matrix.get_matrix()
    test_empty, test_full, reference_empty, reference_full = confusion_matrix.get_existence()

    if test_empty and reference_empty:
        if nan_for_nonexisting:
            return float("NaN")
        else:
            return 0.

    return float(tp / (tp + fp + fn))


def precision(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
    """TP / (TP + FP)"""

    if confusion_matrix is None:
        confusion_matrix = ConfusionMatrix(test, reference)

    tp, fp, tn, fn = confusion_matrix.get_matrix()
    test_empty, test_full, reference_empty, reference_full = confusion_matrix.get_existence()

    if test_empty:
        if nan_for_nonexisting:
            return float("NaN")
        else:
            return 0.

    return float(tp / (tp + fp))


def sensitivity(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
    """TP / (TP + FN)"""

    if confusion_matrix is None:
        confusion_matrix = ConfusionMatrix(test, reference)

    tp, fp, tn, fn = confusion_matrix.get_matrix()
    test_empty, test_full, reference_empty, reference_full = confusion_matrix.get_existence()

    if reference_empty:
        if nan_for_nonexisting:
            return float("NaN")
        else:
            return 0.

    return float(tp / (tp + fn))


def recall(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
    """TP / (TP + FN)"""

    return sensitivity(test, reference, confusion_matrix, nan_for_nonexisting, **kwargs)


def specificity(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
    """TN / (TN + FP)"""

    if confusion_matrix is None:
        confusion_matrix = ConfusionMatrix(test, reference)

    tp, fp, tn, fn = confusion_matrix.get_matrix()
    test_empty, test_full, reference_empty, reference_full = confusion_matrix.get_existence()

    if reference_full:
        if nan_for_nonexisting:
            return float("NaN")
        else:
            return 0.

    return float(tn / (tn + fp))


def accuracy(test=None, reference=None, confusion_matrix=None, **kwargs):
    """(TP + TN) / (TP + FP + FN + TN)"""

    if confusion_matrix is None:
        confusion_matrix = ConfusionMatrix(test, reference)

    tp, fp, tn, fn = confusion_matrix.get_matrix()

    return float((tp + tn) / (tp + fp + tn + fn))


def fscore(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, beta=1., **kwargs):
    """(1 + b^2) * TP / ((1 + b^2) * TP + b^2 * FN + FP)"""

    precision_ = precision(test, reference, confusion_matrix, nan_for_nonexisting)
    recall_ = recall(test, reference, confusion_matrix, nan_for_nonexisting)

    return (1 + beta*beta) * precision_ * recall_ /\
        ((beta*beta * precision_) + recall_)


def false_positive_rate(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
    """FP / (FP + TN)"""

    return 1 - specificity(test, reference, confusion_matrix, nan_for_nonexisting)


def false_omission_rate(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
    """FN / (TN + FN)"""

    if confusion_matrix is None:
        confusion_matrix = ConfusionMatrix(test, reference)

    tp, fp, tn, fn = confusion_matrix.get_matrix()
    test_empty, test_full, reference_empty, reference_full = confusion_matrix.get_existence()

    if test_full:
        if nan_for_nonexisting:
            return float("NaN")
        else:
            return 0.

    return float(fn / (fn + tn))


def false_negative_rate(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
    """FN / (TP + FN)"""

    return 1 - sensitivity(test, reference, confusion_matrix, nan_for_nonexisting)


def true_negative_rate(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
    """TN / (TN + FP)"""

    return specificity(test, reference, confusion_matrix, nan_for_nonexisting)


def false_discovery_rate(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
    """FP / (TP + FP)"""

    return 1 - precision(test, reference, confusion_matrix, nan_for_nonexisting)


def negative_predictive_value(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, **kwargs):
    """TN / (TN + FN)"""

    return 1 - false_omission_rate(test, reference, confusion_matrix, nan_for_nonexisting)


def total_positives_test(test=None, reference=None, confusion_matrix=None, **kwargs):
    """TP + FP"""

    if confusion_matrix is None:
        confusion_matrix = ConfusionMatrix(test, reference)

    tp, fp, tn, fn = confusion_matrix.get_matrix()

    return tp + fp


def total_negatives_test(test=None, reference=None, confusion_matrix=None, **kwargs):
    """TN + FN"""

    if confusion_matrix is None:
        confusion_matrix = ConfusionMatrix(test, reference)

    tp, fp, tn, fn = confusion_matrix.get_matrix()

    return tn + fn


def total_positives_reference(test=None, reference=None, confusion_matrix=None, **kwargs):
    """TP + FN"""

    if confusion_matrix is None:
        confusion_matrix = ConfusionMatrix(test, reference)

    tp, fp, tn, fn = confusion_matrix.get_matrix()

    return tp + fn


def total_negatives_reference(test=None, reference=None, confusion_matrix=None, **kwargs):
    """TN + FP"""

    if confusion_matrix is None:
        confusion_matrix = ConfusionMatrix(test, reference)

    tp, fp, tn, fn = confusion_matrix.get_matrix()

    return tn + fp


def hausdorff_distance(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, voxel_spacing=None, connectivity=1, **kwargs):

    if confusion_matrix is None:
        confusion_matrix = ConfusionMatrix(test, reference)

    test_empty, test_full, reference_empty, reference_full = confusion_matrix.get_existence()

    if test_empty or test_full or reference_empty or reference_full:
        if nan_for_nonexisting:
            return float("NaN")
        else:
            return 0

    test, reference = confusion_matrix.test, confusion_matrix.reference

    return metric.hd(test, reference, voxel_spacing, connectivity)


def hausdorff_distance_95(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, voxel_spacing=None, connectivity=1, **kwargs):

    if confusion_matrix is None:
        confusion_matrix = ConfusionMatrix(test, reference)

    test_empty, test_full, reference_empty, reference_full = confusion_matrix.get_existence()

    if test_empty or test_full or reference_empty or reference_full:
        if nan_for_nonexisting:
            return float("NaN")
        else:
            return 0

    test, reference = confusion_matrix.test, confusion_matrix.reference

    return metric.hd95(test, reference, voxel_spacing, connectivity)


def avg_surface_distance(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, voxel_spacing=None, connectivity=1, **kwargs):

    if confusion_matrix is None:
        confusion_matrix = ConfusionMatrix(test, reference)

    test_empty, test_full, reference_empty, reference_full = confusion_matrix.get_existence()

    if test_empty or test_full or reference_empty or reference_full:
        if nan_for_nonexisting:
            return float("NaN")
        else:
            return 0

    test, reference = confusion_matrix.test, confusion_matrix.reference

    return metric.asd(test, reference, voxel_spacing, connectivity)


def avg_surface_distance_symmetric(test=None, reference=None, confusion_matrix=None, nan_for_nonexisting=True, voxel_spacing=None, connectivity=1, **kwargs):

    if confusion_matrix is None:
        confusion_matrix = ConfusionMatrix(test, reference)

    test_empty, test_full, reference_empty, reference_full = confusion_matrix.get_existence()

    if test_empty or test_full or reference_empty or reference_full:
        if nan_for_nonexisting:
            return float("NaN")
        else:
            return 0

    test, reference = confusion_matrix.test, confusion_matrix.reference

    return metric.assd(test, reference, voxel_spacing, connectivity)


ALL_METRICS = {
    "False Positive Rate": false_positive_rate,
    "Dice": dice,
    "Jaccard": jaccard,
    "Hausdorff Distance": hausdorff_distance,
    "Hausdorff Distance 95": hausdorff_distance_95,
    "Precision": precision,
    "Recall": recall,
    "Avg. Symmetric Surface Distance": avg_surface_distance_symmetric,
    "Avg. Surface Distance": avg_surface_distance,
    "Accuracy": accuracy,
    "False Omission Rate": false_omission_rate,
    "Negative Predictive Value": negative_predictive_value,
    "False Negative Rate": false_negative_rate,
    "True Negative Rate": true_negative_rate,
    "False Discovery Rate": false_discovery_rate,
    "Total Positives Test": total_positives_test,
    "Total Negatives Test": total_negatives_test,
    "Total Positives Reference": total_positives_reference,
    "total Negatives Reference": total_negatives_reference
}