File size: 1,188 Bytes
ecf08bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#!/bin/bash -l
#SBATCH --nodes=1 --gres=gpu:1 --time=24:00:00
#SBATCH --job-name=Task503_glacier_mtl_early_3

export data_raw="/home/woody/iwi5/iwi5039h/data_raw"
export nnUNet_raw_data_base="/home/woody/iwi5/iwi5039h/nnUNet_data/nnUNet_raw_data_base/"
export nnUNet_preprocessed="/home/woody/iwi5/iwi5039h/nnUNet_data/nnUNet_preprocessed/"
export RESULTS_FOLDER="/home/woody/iwi5/iwi5039h/nnUNet_data/RESULTS_FOLDER"

cd nnunet_glacer
pwd
conda activate nnunet

python3 nnunet/run/run_training.py 2d nnUNetTrainerMTLearly 503 3 -p nnUNetPlans_mtl --disable_postprocessing_on_folds
python3 nnunet/inference/predict_simple.py -i $nnUNet_raw_data_base/nnUNet_raw_data/Task503_Glacier_mtl/imagesTs -o $RESULTS_FOLDER/test_predictions/Task503_Glacier_mtl_early/fold_3 -t 503 -m 2d -f 3 -p nnUNetPlans_mtl -tr nnUNetTrainerMTLearly
python3 nnunet/dataset_conversion/Task503_Glacier_mtl_reverse.py -i $RESULTS_FOLDER/test_predictions/Task503_Glacier_mtl_early/fold_3
python3 ./evaluate_nnUNet.py --predictions $RESULTS_FOLDER/test_predictions/Task503_Glacier_mtl_early/fold_3/pngs --labels_fronts $data_raw/fronts/test --labels_zones $data_raw/zones/test --sar_images $data_raw/sar_images/test