File size: 6,403 Bytes
ecf08bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#    Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


import shutil
from collections import OrderedDict
from copy import deepcopy
from multiprocessing.pool import Pool

from batchgenerators.utilities.file_and_folder_operations import *
from nnunet.dataset_conversion.Task056_VerSe2019 import check_if_all_in_good_orientation, \
    print_unique_labels_and_their_volumes
from nnunet.paths import nnUNet_raw_data, preprocessing_output_dir
from nnunet.utilities.image_reorientation import reorient_all_images_in_folder_to_ras


def manually_change_plans():
    pp_out_folder = join(preprocessing_output_dir, "Task083_VerSe2020")
    original_plans = join(pp_out_folder, "nnUNetPlansv2.1_plans_3D.pkl")
    assert isfile(original_plans)
    original_plans = load_pickle(original_plans)

    # let's change the network topology for lowres and fullres
    new_plans = deepcopy(original_plans)
    stages = len(new_plans['plans_per_stage'])
    for s in range(stages):
        new_plans['plans_per_stage'][s]['patch_size'] = (224, 160, 160)
        new_plans['plans_per_stage'][s]['pool_op_kernel_sizes'] = [[2, 2, 2],
                                                                   [2, 2, 2],
                                                                   [2, 2, 2],
                                                                   [2, 2, 2],
                                                                   [2, 2, 2]] # bottleneck of 7x5x5
        new_plans['plans_per_stage'][s]['conv_kernel_sizes'] = [[3, 3, 3],
                                                                [3, 3, 3],
                                                                [3, 3, 3],
                                                                [3, 3, 3],
                                                                [3, 3, 3],
                                                                [3, 3, 3]]
    save_pickle(new_plans, join(pp_out_folder, "custom_plans_3D.pkl"))


if __name__ == "__main__":
    ### First we create a nnunet dataset from verse. After this the images will be all willy nilly in their
    # orientation because that's how VerSe comes
    base = '/home/fabian/Downloads/osfstorage-archive/'

    task_id = 83
    task_name = "VerSe2020"

    foldername = "Task%03.0d_%s" % (task_id, task_name)

    out_base = join(nnUNet_raw_data, foldername)
    imagestr = join(out_base, "imagesTr")
    imagests = join(out_base, "imagesTs")
    labelstr = join(out_base, "labelsTr")
    maybe_mkdir_p(imagestr)
    maybe_mkdir_p(imagests)
    maybe_mkdir_p(labelstr)

    train_patient_names = []

    for t in subdirs(join(base, 'training_data'), join=False):
        train_patient_names_here = [i[:-len("_seg.nii.gz")] for i in
                                    subfiles(join(base, "training_data", t), join=False, suffix="_seg.nii.gz")]
        for p in train_patient_names_here:
            curr = join(base, "training_data", t)
            label_file = join(curr, p + "_seg.nii.gz")
            image_file = join(curr, p + ".nii.gz")
            shutil.copy(image_file, join(imagestr, p + "_0000.nii.gz"))
            shutil.copy(label_file, join(labelstr, p + ".nii.gz"))

        train_patient_names += train_patient_names_here

    json_dict = OrderedDict()
    json_dict['name'] = "VerSe2020"
    json_dict['description'] = "VerSe2020"
    json_dict['tensorImageSize'] = "4D"
    json_dict['reference'] = "see challenge website"
    json_dict['licence'] = "see challenge website"
    json_dict['release'] = "0.0"
    json_dict['modality'] = {
        "0": "CT",
    }
    json_dict['labels'] = {i: str(i) for i in range(29)}

    json_dict['numTraining'] = len(train_patient_names)
    json_dict['numTest'] = []
    json_dict['training'] = [
        {'image': "./imagesTr/%s.nii.gz" % i.split("/")[-1], "label": "./labelsTr/%s.nii.gz" % i.split("/")[-1]} for i
        in
        train_patient_names]
    json_dict['test'] = ["./imagesTs/%s.nii.gz" % i.split("/")[-1] for i in []]

    save_json(json_dict, os.path.join(out_base, "dataset.json"))

    # now we reorient all those images to ras. This saves a pkl with the original affine. We need this information to
    # bring our predictions into the same geometry for submission
    reorient_all_images_in_folder_to_ras(imagestr, 16)
    reorient_all_images_in_folder_to_ras(imagests, 16)
    reorient_all_images_in_folder_to_ras(labelstr, 16)

    # sanity check
    check_if_all_in_good_orientation(imagestr, labelstr, join(out_base, 'sanitycheck'))
    # looks good to me - proceed

    # check the volumes of the vertebrae
    p = Pool(6)
    _ = p.starmap(print_unique_labels_and_their_volumes, zip(subfiles(labelstr, suffix='.nii.gz'), [1000] * 113))

    # looks good

    # Now we are ready to run nnU-Net

    """# run this part of the code once training is done
    folder_gt = "/media/fabian/My Book/MedicalDecathlon/nnUNet_raw_splitted/Task056_VerSe/labelsTr"

    folder_pred = "/home/fabian/drives/datasets/results/nnUNet/3d_fullres/Task056_VerSe/nnUNetTrainerV2__nnUNetPlansv2.1/cv_niftis_raw"
    out_json = "/home/fabian/Task056_VerSe_3d_fullres_summary.json"
    evaluate_verse_folder(folder_pred, folder_gt, out_json)

    folder_pred = "/home/fabian/drives/datasets/results/nnUNet/3d_lowres/Task056_VerSe/nnUNetTrainerV2__nnUNetPlansv2.1/cv_niftis_raw"
    out_json = "/home/fabian/Task056_VerSe_3d_lowres_summary.json"
    evaluate_verse_folder(folder_pred, folder_gt, out_json)

    folder_pred = "/home/fabian/drives/datasets/results/nnUNet/3d_cascade_fullres/Task056_VerSe/nnUNetTrainerV2CascadeFullRes__nnUNetPlansv2.1/cv_niftis_raw"
    out_json = "/home/fabian/Task056_VerSe_3d_cascade_fullres_summary.json"
    evaluate_verse_folder(folder_pred, folder_gt, out_json)"""