File size: 6,403 Bytes
ecf08bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
from collections import OrderedDict
from copy import deepcopy
from multiprocessing.pool import Pool
from batchgenerators.utilities.file_and_folder_operations import *
from nnunet.dataset_conversion.Task056_VerSe2019 import check_if_all_in_good_orientation, \
print_unique_labels_and_their_volumes
from nnunet.paths import nnUNet_raw_data, preprocessing_output_dir
from nnunet.utilities.image_reorientation import reorient_all_images_in_folder_to_ras
def manually_change_plans():
pp_out_folder = join(preprocessing_output_dir, "Task083_VerSe2020")
original_plans = join(pp_out_folder, "nnUNetPlansv2.1_plans_3D.pkl")
assert isfile(original_plans)
original_plans = load_pickle(original_plans)
# let's change the network topology for lowres and fullres
new_plans = deepcopy(original_plans)
stages = len(new_plans['plans_per_stage'])
for s in range(stages):
new_plans['plans_per_stage'][s]['patch_size'] = (224, 160, 160)
new_plans['plans_per_stage'][s]['pool_op_kernel_sizes'] = [[2, 2, 2],
[2, 2, 2],
[2, 2, 2],
[2, 2, 2],
[2, 2, 2]] # bottleneck of 7x5x5
new_plans['plans_per_stage'][s]['conv_kernel_sizes'] = [[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3]]
save_pickle(new_plans, join(pp_out_folder, "custom_plans_3D.pkl"))
if __name__ == "__main__":
### First we create a nnunet dataset from verse. After this the images will be all willy nilly in their
# orientation because that's how VerSe comes
base = '/home/fabian/Downloads/osfstorage-archive/'
task_id = 83
task_name = "VerSe2020"
foldername = "Task%03.0d_%s" % (task_id, task_name)
out_base = join(nnUNet_raw_data, foldername)
imagestr = join(out_base, "imagesTr")
imagests = join(out_base, "imagesTs")
labelstr = join(out_base, "labelsTr")
maybe_mkdir_p(imagestr)
maybe_mkdir_p(imagests)
maybe_mkdir_p(labelstr)
train_patient_names = []
for t in subdirs(join(base, 'training_data'), join=False):
train_patient_names_here = [i[:-len("_seg.nii.gz")] for i in
subfiles(join(base, "training_data", t), join=False, suffix="_seg.nii.gz")]
for p in train_patient_names_here:
curr = join(base, "training_data", t)
label_file = join(curr, p + "_seg.nii.gz")
image_file = join(curr, p + ".nii.gz")
shutil.copy(image_file, join(imagestr, p + "_0000.nii.gz"))
shutil.copy(label_file, join(labelstr, p + ".nii.gz"))
train_patient_names += train_patient_names_here
json_dict = OrderedDict()
json_dict['name'] = "VerSe2020"
json_dict['description'] = "VerSe2020"
json_dict['tensorImageSize'] = "4D"
json_dict['reference'] = "see challenge website"
json_dict['licence'] = "see challenge website"
json_dict['release'] = "0.0"
json_dict['modality'] = {
"0": "CT",
}
json_dict['labels'] = {i: str(i) for i in range(29)}
json_dict['numTraining'] = len(train_patient_names)
json_dict['numTest'] = []
json_dict['training'] = [
{'image': "./imagesTr/%s.nii.gz" % i.split("/")[-1], "label": "./labelsTr/%s.nii.gz" % i.split("/")[-1]} for i
in
train_patient_names]
json_dict['test'] = ["./imagesTs/%s.nii.gz" % i.split("/")[-1] for i in []]
save_json(json_dict, os.path.join(out_base, "dataset.json"))
# now we reorient all those images to ras. This saves a pkl with the original affine. We need this information to
# bring our predictions into the same geometry for submission
reorient_all_images_in_folder_to_ras(imagestr, 16)
reorient_all_images_in_folder_to_ras(imagests, 16)
reorient_all_images_in_folder_to_ras(labelstr, 16)
# sanity check
check_if_all_in_good_orientation(imagestr, labelstr, join(out_base, 'sanitycheck'))
# looks good to me - proceed
# check the volumes of the vertebrae
p = Pool(6)
_ = p.starmap(print_unique_labels_and_their_volumes, zip(subfiles(labelstr, suffix='.nii.gz'), [1000] * 113))
# looks good
# Now we are ready to run nnU-Net
"""# run this part of the code once training is done
folder_gt = "/media/fabian/My Book/MedicalDecathlon/nnUNet_raw_splitted/Task056_VerSe/labelsTr"
folder_pred = "/home/fabian/drives/datasets/results/nnUNet/3d_fullres/Task056_VerSe/nnUNetTrainerV2__nnUNetPlansv2.1/cv_niftis_raw"
out_json = "/home/fabian/Task056_VerSe_3d_fullres_summary.json"
evaluate_verse_folder(folder_pred, folder_gt, out_json)
folder_pred = "/home/fabian/drives/datasets/results/nnUNet/3d_lowres/Task056_VerSe/nnUNetTrainerV2__nnUNetPlansv2.1/cv_niftis_raw"
out_json = "/home/fabian/Task056_VerSe_3d_lowres_summary.json"
evaluate_verse_folder(folder_pred, folder_gt, out_json)
folder_pred = "/home/fabian/drives/datasets/results/nnUNet/3d_cascade_fullres/Task056_VerSe/nnUNetTrainerV2CascadeFullRes__nnUNetPlansv2.1/cv_niftis_raw"
out_json = "/home/fabian/Task056_VerSe_3d_cascade_fullres_summary.json"
evaluate_verse_folder(folder_pred, folder_gt, out_json)"""
|