File size: 38,445 Bytes
ecf08bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
from argparse import ArgumentParser
import os
import numpy as np
from sklearn.metrics import precision_score, recall_score, f1_score, jaccard_score
from data_processing.data_postprocessing import postprocess_zone_segmenation, postprocess_front_segmenation, extract_front_from_zones
import torch.nn as nn
#from segmentation_models_pytorch.losses.dice import DiceLoss
#from PIL import Image
#from models.front_segmentation_model import DistanceMapBCE
import re
from pathlib import Path
import cv2
import scipy.stats as st
from scipy.spatial import distance
import skimage
import matplotlib.pyplot as plt
from skimage.morphology import skeletonize
import json
import plotly.graph_objects as go
import plotly.express as px
import plotly.io as pio
import os
pio.kaleido.scope.mathjax = None
def front_error(prediction, label):
"""
prediction: mask of the front prediction (WxH)
label: mask of the front label (WxH)
returns the mean distance of the two fronts
"""
front_is_present_flag = True
polyline_pred = np.nonzero(prediction)
polyline_label = np.nonzero(label)
# Generate Nx2 matrix of pixels that represent the front
pred_coords = np.array(list(zip(polyline_pred[0], polyline_pred[1])))
mask_coords = np.array(list(zip(polyline_label[0], polyline_label[1])))
# Return NaN if front is not detected in either pred or mask
if pred_coords.shape[0] == 0 or mask_coords.shape[0] == 0:
front_is_present_flag = False
return front_is_present_flag, np.nan, np.nan, np.nan
# Generate the pairwise distances between each point and the closest point in the other array
distances1 = distance.cdist(pred_coords, mask_coords).min(axis=1)
distances2 = distance.cdist(mask_coords, pred_coords).min(axis=1)
distances = np.concatenate((distances1, distances2))
# Calculate the average distance between each point and the closest point in the other array
mean_distance = np.mean(distances)
median_distance = np.median(distances)
return front_is_present_flag, mean_distance, median_distance, distances
def multi_class_metric(metric_function, complete_predicted_mask, complete_target):
metrics = []
metric_na, metric_stone, metric_glacier, metric_ocean = metric_function(np.ndarray.flatten(complete_target),
np.ndarray.flatten(complete_predicted_mask),
average=None)
metric_macro_average = (metric_na + metric_stone + metric_glacier + metric_ocean) / 4
metrics.append(metric_macro_average)
metrics.append(metric_na)
metrics.append(metric_stone)
metrics.append(metric_glacier)
metrics.append(metric_ocean)
return metrics
def get_matching_out_of_folder(file_name, folder):
files = os.listdir(folder)
matching_files = [a for a in files if
re.match(pattern=os.path.split(file_name)[1][:-4], string=os.path.split(a)[1])]
if len(matching_files) > 1:
print("Something went wrong!")
print(f"targets_matching: {matching_files}")
if len(matching_files) < 1:
print("Something went wrong! No matches found")
return matching_files[0]
def turn_colors_to_class_labels_zones(mask):
mask_class_labels = np.copy(mask)
mask_class_labels[mask == 0] = 0
mask_class_labels[mask == 64] = 1
mask_class_labels[mask == 127] = 2
mask_class_labels[mask == 254] = 3
return mask_class_labels
def turn_colors_to_class_labels_front(mask):
mask_class_labels = np.copy(mask)
mask_class_labels[mask == 0] = 0
mask_class_labels[mask == 255] = 1
return mask_class_labels
def print_zone_metrics(metric_name, list_of_metrics):
metrics = [metric for [metric, _, _, _, _] in list_of_metrics if not np.isnan(metric)]
metrics_na = [metric_na for [_, metric_na, _, _, _] in list_of_metrics if not np.isnan(metric_na)]
metrics_stone = [metric_stone for [_, _, metric_stone, _, _] in list_of_metrics if not np.isnan(metric_stone)]
metrics_glacier = [metric_glacier for [_, _, _, metric_glacier, _] in list_of_metrics if not np.isnan(metric_glacier)]
metrics_ocean = [metric_ocean for [_, _, _, _, metric_ocean] in list_of_metrics if not np.isnan(metric_ocean)]
result = {}
print(f"Average {metric_name}: {sum(metrics) / len(metrics)}")
result[f'Average_{metric_name}'] = sum(metrics) / len(metrics)
print(f"Average {metric_name} NA Area: {sum(metrics_na) / len(metrics_na)}")
result[f'Average_{metric_name}_NA_Area'] = sum(metrics_na) / len(metrics_na)
print(f"Average {metric_name} Stone: {sum(metrics_stone) / len(metrics_stone)}")
result[f"Average_{metric_name}_Stone"] =sum(metrics_stone) / len(metrics_stone)
print(f"Average {metric_name} Glacier: {sum(metrics_glacier) / len(metrics_glacier)}")
result[f"Average_{metric_name}_Glacier"] = sum(metrics_glacier) / len(metrics_glacier)
print(f"Average {metric_name} Ocean and Ice Melange: {sum(metrics_ocean) / len(metrics_ocean)}")
result[f"Average_{metric_name}_Ocean_and_Ice_Melange"] = sum(metrics_ocean) / len(metrics_ocean)
return result
def print_front_metric(name, metric):
result = {}
print(f"Average {name}: {sum(metric) / len(metric)}")
result[f"Average {name}"] = sum(metric) / len(metric)
return result
def mask_prediction_with_bounding_box(post_complete_predicted_mask, file_name, bounding_boxes_directory):
matching_bounding_box_file = get_matching_out_of_folder(file_name, bounding_boxes_directory)
with open(os.path.join(bounding_boxes_directory, matching_bounding_box_file)) as f:
coord_file_lines = f.readlines()
left_upper_corner_x, left_upper_corner_y = [round(float(coord)) for coord in coord_file_lines[1].split(",")]
left_lower_corner_x, left_lower_corner_y = [round(float(coord)) for coord in coord_file_lines[2].split(",")]
right_lower_corner_x, right_lower_corner_y = [round(float(coord)) for coord in coord_file_lines[3].split(",")]
right_upper_corner_x, right_upper_corner_y = [round(float(coord)) for coord in coord_file_lines[4].split(",")]
# Make sure the Bounding Box coordinates are within the image
if left_upper_corner_x < 0: left_upper_corner_x = 0
if left_lower_corner_x < 0: left_lower_corner_x = 0
if right_upper_corner_x > len(post_complete_predicted_mask[0]): right_upper_corner_x = len(post_complete_predicted_mask[0]) - 1
if right_lower_corner_x > len(post_complete_predicted_mask[0]): right_lower_corner_x = len(post_complete_predicted_mask[0]) - 1
if left_upper_corner_y > len(post_complete_predicted_mask): left_upper_corner_y = len(post_complete_predicted_mask) - 1
if left_lower_corner_y < 0: left_lower_corner_y = 0
if right_upper_corner_y > len(post_complete_predicted_mask): right_upper_corner_y = len(post_complete_predicted_mask) - 1
if right_lower_corner_y < 0: right_lower_corner_y = 0
# remember cv2 images have the shape (height, width)
post_complete_predicted_mask[:right_lower_corner_y, :] = 0.0
post_complete_predicted_mask[left_upper_corner_y:, :] = 0.0
post_complete_predicted_mask[:, :left_upper_corner_x] = 0.0
post_complete_predicted_mask[:, right_lower_corner_x:] = 0.0
return post_complete_predicted_mask
def post_processing(target_masks, complete_predicted_masks, bounding_boxes_directory, complete_test_directory):
meter_threshold = 750 # in meter
print("Post-processing ...\n\n")
for file_name in complete_predicted_masks:
prediction_name = file_name
if file_name.endswith('_zone.png'):
file_name = file_name[:-len("_zone.png")] + ".png"
if file_name.endswith('_front.png'):
file_name = file_name[:-len("front.png")] +".png"
print(f"File: {file_name}")
resolution = int(os.path.split(file_name)[1][:-4].split('_')[-3])
# pixel_threshold (pixel) * resolution (m/pixel) = meter_threshold (m)
pixel_threshold = meter_threshold / resolution
complete_predicted_mask = cv2.imread(os.path.join(complete_test_directory, prediction_name).__str__(), cv2.IMREAD_GRAYSCALE)
if target_masks == "zones":
post_complete_predicted_mask = postprocess_zone_segmenation(complete_predicted_mask)
post_complete_predicted_mask = extract_front_from_zones(post_complete_predicted_mask, pixel_threshold)
else:
complete_predicted_mask_class_labels = turn_colors_to_class_labels_front(complete_predicted_mask)
post_complete_predicted_mask = postprocess_front_segmenation(complete_predicted_mask_class_labels, pixel_threshold)
post_complete_predicted_mask = post_complete_predicted_mask * 255
post_complete_predicted_mask = mask_prediction_with_bounding_box(post_complete_predicted_mask, file_name,
bounding_boxes_directory)
cv2.imwrite(os.path.join(complete_postprocessed_test_directory, file_name), post_complete_predicted_mask)
def calculate_front_delineation_metric(complete_postprocessed_test_directory, post_processed_predicted_masks, directory_of_target_fronts, bounding_boxes_directory):
list_of_mean_front_errors = []
list_of_median_front_errors = []
list_of_all_front_errors = []
number_of_images_with_no_predicted_front = 0
results = {}
for file_name in post_processed_predicted_masks[:]:
post_processed_predicted_mask = cv2.imread(
os.path.join(complete_postprocessed_test_directory, file_name).__str__(), cv2.IMREAD_GRAYSCALE)
matching_target_file = get_matching_out_of_folder(file_name, directory_of_target_fronts)
target_front = cv2.imread(os.path.join(directory_of_target_fronts, matching_target_file).__str__(),
cv2.IMREAD_GRAYSCALE)
if file_name.endswith("_front.png"):
resolution = int(os.path.split(file_name)[1][:-4].split('_')[-4])
else:
resolution = int(os.path.split(file_name)[1][:-4].split('_')[-3])
# images need to be turned into a Tensor [0, ..., n_classes-1]
post_processed_predicted_mask_class_labels = turn_colors_to_class_labels_front(post_processed_predicted_mask)
target_front_class_labels = turn_colors_to_class_labels_front(target_front)
if file_name.endswith('_front.png'):
post_processed_predicted_mask_class_labels = mask_prediction_with_bounding_box(post_processed_predicted_mask_class_labels, file_name[:-len('_front.png')]+'.png', bounding_boxes_directory)
post_processed_predicted_mask_class_labels = skeletonize(post_processed_predicted_mask_class_labels)
front_is_present_flag, mean_error, median_error, errors = front_error(
post_processed_predicted_mask_class_labels, target_front_class_labels)
if not front_is_present_flag:
number_of_images_with_no_predicted_front += 1
else:
list_of_mean_front_errors.append(resolution * mean_error)
list_of_median_front_errors.append(resolution * median_error)
list_of_all_front_errors = np.concatenate((list_of_all_front_errors, resolution * errors))
print(f"Number of images with no predicted front: {number_of_images_with_no_predicted_front}")
results["Number_no_front"] = number_of_images_with_no_predicted_front
if number_of_images_with_no_predicted_front >= len(post_processed_predicted_masks):
print(f"Number of images with no predicted front is equal to complete set of images. No metrics can be calculated.")
return [], {}
list_of_mean_front_errors_without_nan = [front_error for front_error in list_of_mean_front_errors if
not np.isnan(front_error)]
list_of_median_front_errors_without_nan = [front_error for front_error in list_of_median_front_errors if
not np.isnan(front_error)]
print(f"Mean-mean distance error (in meters): {sum(list_of_mean_front_errors_without_nan) / len(list_of_mean_front_errors_without_nan)}")
results["Mean_mean_distance"] = sum(list_of_mean_front_errors_without_nan) / len(list_of_mean_front_errors_without_nan)
print(f"Mean-median distance error (in meters): {sum(list_of_median_front_errors_without_nan) / len(list_of_median_front_errors_without_nan)}")
results["Mean_median_distance"] = sum(list_of_median_front_errors_without_nan) / len(list_of_median_front_errors_without_nan)
list_of_mean_front_errors_without_nan = np.array(list_of_mean_front_errors_without_nan)
list_of_median_front_errors_without_nan = np.array(list_of_median_front_errors_without_nan)
print(f"Median-mean distance error (in meters): {np.median(list_of_mean_front_errors_without_nan)}")
results["Median_mean_distance"] = np.median(list_of_mean_front_errors_without_nan)
print(f"Median-median distance error (in meters): {np.median(list_of_median_front_errors_without_nan)}")
results["Median_median_distance"] = np.median(list_of_median_front_errors_without_nan)
list_of_all_front_errors_without_nan = [front_error for front_error in list_of_all_front_errors if
not np.isnan(front_error)]
list_of_all_front_errors_without_nan = np.array(list_of_all_front_errors_without_nan)
confidence_interval = st.norm.interval(alpha=0.95,
loc=np.mean(list_of_all_front_errors_without_nan),
scale=st.sem(list_of_all_front_errors_without_nan))
mean = np.mean(list_of_all_front_errors_without_nan)
std = np.std(list_of_all_front_errors_without_nan)
print(f"Confidence interval: {confidence_interval}, mean: {mean}, standard deviation: {std}")
results["Confidence_interval"] = confidence_interval
results['mean'] = mean
results['standard_deviation'] = std
return list_of_mean_front_errors_without_nan, results
def calculate_segmentation_metrics(target_mask_modality, complete_predicted_masks, complete_test_directory,
directory_of_complete_targets):
print("Calculate segmentation metrics ...\n\n")
list_of_ious = []
list_of_precisions = []
list_of_recalls = []
list_of_f1_scores = []
result = {}
for file_name in complete_predicted_masks:
print(f"File: {file_name}")
complete_predicted_mask = cv2.imread(os.path.join(complete_test_directory, file_name).__str__(),
cv2.IMREAD_GRAYSCALE)
matching_target_file = get_matching_out_of_folder(file_name, directory_of_complete_targets)
complete_target = cv2.imread(os.path.join(directory_of_complete_targets, matching_target_file).__str__(),
cv2.IMREAD_GRAYSCALE)
if target_mask_modality == "zones":
# images need to be turned into a Tensor [0, ..., n_classes-1]
complete_predicted_mask_class_labels = turn_colors_to_class_labels_zones(complete_predicted_mask)
complete_target_class_labels = turn_colors_to_class_labels_zones(complete_target)
# Segmentation evaluation metrics
list_of_ious.append(
multi_class_metric(jaccard_score, complete_predicted_mask_class_labels, complete_target_class_labels))
list_of_precisions.append(
multi_class_metric(precision_score, complete_predicted_mask_class_labels, complete_target_class_labels))
list_of_recalls.append(
multi_class_metric(recall_score, complete_predicted_mask_class_labels, complete_target_class_labels))
list_of_f1_scores.append(
multi_class_metric(f1_score, complete_predicted_mask_class_labels, complete_target_class_labels))
else:
# images need to be turned into a Tensor [0, ..., n_classes-1]
complete_predicted_mask_class_labels = turn_colors_to_class_labels_front(complete_predicted_mask)
complete_target_class_labels = turn_colors_to_class_labels_front(complete_target)
# Segmentation evaluation metrics
flattened_complete_target_class_labels = np.ndarray.flatten(complete_target_class_labels)
flattened_complete_predicted_mask_class_labels = np.ndarray.flatten(complete_predicted_mask_class_labels)
list_of_ious.append(
jaccard_score(flattened_complete_target_class_labels, flattened_complete_predicted_mask_class_labels))
list_of_precisions.append(
precision_score(flattened_complete_target_class_labels, flattened_complete_predicted_mask_class_labels))
list_of_recalls.append(
recall_score(flattened_complete_target_class_labels, flattened_complete_predicted_mask_class_labels))
list_of_f1_scores.append(
f1_score(flattened_complete_target_class_labels, flattened_complete_predicted_mask_class_labels))
if target_mask_modality == "zones":
result_precision = print_zone_metrics("Precision", list_of_precisions)
result["Zone_Precision"] = result_precision
result_recal = print_zone_metrics("Recall", list_of_recalls)
result["Zone_Recall"] = result_recal
result_f1 = print_zone_metrics("F1 Score", list_of_f1_scores)
result["Zone_F1"] = result_f1
result_iou = print_zone_metrics("IoU", list_of_ious)
result["Zone_IoU"] = result_iou
else:
if len(list_of_precisions) > 0:
result_precsions = print_front_metric("Precision", list_of_precisions)
result["Front_Precsion"] = result_precsions
if len(list_of_recalls) > 0:
result_recall = print_front_metric("Recall", list_of_recalls)
result["Front_Recall"] = result_recall
if len(list_of_f1_scores):
result_f1 = print_front_metric("F1 Score", list_of_f1_scores)
result["Front_F1"] = result_f1
if len(list_of_ious)>0:
result_iou = print_front_metric("IoU", list_of_ious)
result["Front_IoU"] = result_iou
return result
def check_whether_winter_half_year(name):
split_name = name[:-4].split('_')
if split_name[0] == "COL" or split_name[0] == "JAC":
nord_halbkugel = True
else: # Jorum, Maple, Crane, SI, DBE
nord_halbkugel = False
month = int(split_name[1].split('-')[1])
if nord_halbkugel:
if month < 4 or month > 8:
winter = True
else:
winter = False
else:
if month < 4 or month > 8:
winter = False
else:
winter = True
return winter
def front_delineation_metric(modality, complete_postprocessed_test_directory, directory_of_target_fronts, bounding_boxes_directory):
print("Calculating distance errors ...\n\n")
if modality == 'front':
post_processed_predicted_masks = list(file for file in os.listdir(complete_postprocessed_test_directory) if file.endswith('_front.png'))
elif modality == 'zone':
post_processed_predicted_masks = list(file for file in os.listdir(complete_postprocessed_test_directory))
print("")
print("####################################################################")
print(f"# Results for all images")
print("####################################################################")
fig = px.box(None, points="all", template="plotly_white", log_x=True, height=300)
G10 = px.colors.qualitative.G10
width = 0.5
list_of_mean_front_errors_without_nan, result_all = calculate_front_delineation_metric(complete_postprocessed_test_directory, post_processed_predicted_masks, directory_of_target_fronts, bounding_boxes_directory)
np.savetxt(os.path.join(complete_postprocessed_test_directory, os.pardir, "distance_errors.txt"), list_of_mean_front_errors_without_nan)
fig.add_trace(go.Box(x=list_of_mean_front_errors_without_nan, marker_color='orange', boxmean=True, boxpoints='all', name='all', width=width))
results = {}
results['Result_all'] = result_all
# Season subsetting
for season in ["winter", "summer"]:
print("")
print("####################################################################")
print(f"# Results for only images in {season}")
print("####################################################################")
subset_of_predictions = []
for file_name in post_processed_predicted_masks:
winter = check_whether_winter_half_year(file_name)
if (winter and season == "summer") or (not winter and season == "winter"):
continue
subset_of_predictions.append(file_name)
if len(subset_of_predictions) == 0: continue
all_errors, result_season = calculate_front_delineation_metric(complete_postprocessed_test_directory, subset_of_predictions, directory_of_target_fronts, bounding_boxes_directory)
if season == 'winter':
color = G10[9]
else:
color = G10[8]
print(season, np.mean(all_errors), np.std(all_errors))
fig.add_trace(go.Box(x=all_errors, marker_color=color, boxmean=True, boxpoints='all', name=season, width=width, legendrank=0))
results[season] = result_season
fig.update_layout(showlegend=False, font=dict(family="Times New Roma", size=12))
fig.update_xaxes(title='front delineation error (m)')
fig.update_layout(yaxis={'categoryorder':'array', 'categoryarray':['summer','winter','all']})
fig.update_traces(orientation='h') # horizontal box plots
fig.write_image("create_plots_new/output/error_season.pdf", format='pdf')
# Glacier subsetting
fig = px.box(None, points="all", template="plotly_white", log_x=True, height=300)
fig.add_trace(go.Box(x=list_of_mean_front_errors_without_nan, marker_color='orange', boxmean=True, boxpoints='all', name='all', width=width,legendrank=7))
color = {'COL': G10[3], 'Mapple': G10[4]}
for glacier in ["Mapple", "COL", "Crane", "DBE", "JAC", "Jorum", "SI"]:
print("")
print("####################################################################")
print(f"# Results for only images from {glacier}")
print("####################################################################")
subset_of_predictions = []
for file_name in post_processed_predicted_masks:
if not file_name[:-4].split('_')[0] == glacier:
continue
subset_of_predictions.append(file_name)
if len(subset_of_predictions) == 0: continue
all_errors, result_glacier = calculate_front_delineation_metric(complete_postprocessed_test_directory,subset_of_predictions, directory_of_target_fronts, bounding_boxes_directory)
print(glacier, np.mean(all_errors), np.std(all_errors))
fig.add_trace(
go.Box(x=all_errors, marker_color=color[glacier], boxmean=True, boxpoints='all', name=glacier, width=width, ))
results[glacier] = {}
results[glacier]['all'] = result_glacier
fig.update_layout(showlegend=False, font=dict(family="Times New Roma", size=12))
fig.update_xaxes(title='front delineation error (m)')
fig.update_layout(yaxis={'categoryorder':'array', 'categoryarray':['Mapple', 'COL', 'all']})
fig.update_traces(orientation='h') # horizontal box plots
fig.write_image("create_plots_new/output/error_glacier.pdf", format='pdf')
color = {'ERS': G10[9], 'RSAT': G10[1], 'ENVISAT': G10[8], 'PALSAR':G10[3], 'TSX':G10[4], 'TDX':G10[5], 'S1':G10[6]}
# Sensor subsetting
fig = px.box(None, points="all", template="plotly_white", log_x=True, height=500)
fig.add_trace(go.Box(x=list_of_mean_front_errors_without_nan, marker_color='orange', boxmean=True, boxpoints='all', name='all', width=width))
for sensor in ["RSAT", "S1", "ENVISAT", "ERS", "PALSAR", "TSX", "TDX"]:
print("")
print("####################################################################")
print(f"# Results for only images from {sensor}")
print("####################################################################")
subset_of_predictions = []
for file_name in post_processed_predicted_masks:
if not file_name[:-4].split('_')[2] == sensor:
continue
subset_of_predictions.append(file_name)
if len(subset_of_predictions) == 0: continue
all_errors, result_sensor = calculate_front_delineation_metric(complete_postprocessed_test_directory,subset_of_predictions, directory_of_target_fronts, bounding_boxes_directory)
print(sensor, np.mean(all_errors), np.std(all_errors))
fig.add_trace(
go.Box(x=all_errors, marker_color=color[sensor], boxmean=True, boxpoints='all', name=sensor, width=width))
results[sensor] = result_sensor
fig.update_layout(showlegend=False, font=dict(family="Times New Roma", size=12))
fig.update_xaxes(title='front delineation error (m)')
fig.update_layout(yaxis={'categoryorder':'array', 'categoryarray':[ 'S1','TDX','TSX','PALSAR', 'ENVISAT', 'ERS','all']})
fig.update_traces(orientation='h') # horizontal box plots
fig.write_image("create_plots_new/output/error_satellite.pdf", format='pdf')
exit()
# Resolution subsetting
fig = px.box(None, points="all", template="plotly_white", log_x=True)
fig.add_trace(go.Box(x=list_of_mean_front_errors_without_nan, marker_color='orange', boxmean=True, boxpoints='all', name='all', width=width))
color ={20: G10[9], 17:G10[8], 7:G10[3]}
for res in [20, 17, 7]:
print("")
print("####################################################################")
print(f"# Results for only images with a resolution of {res}")
print("####################################################################")
subset_of_predictions = []
for file_name in post_processed_predicted_masks:
if not int(file_name[:-4].split('_')[3]) == res:
continue
subset_of_predictions.append(file_name)
if len(subset_of_predictions) == 0: continue
all_errors, result_res = calculate_front_delineation_metric(complete_postprocessed_test_directory,subset_of_predictions, directory_of_target_fronts, bounding_boxes_directory)
fig.add_trace(
go.Box(x=all_errors, marker_color=color[res], boxmean=True, boxpoints='all', name=res, width=width))
results[res] = result_res
fig.update_layout(showlegend=False, font=dict(family="Times New Roma", size=12))
fig.update_xaxes(title='front delineation error (m)')
fig.update_layout(yaxis={'categoryorder':'array', 'categoryarray':['7', '17', '20','all']})
fig.update_traces(orientation='h') # horizontal box plots
fig.write_image("create_plots_new/output/error_resolution.pdf", format='pdf')
# Season and glacier subsetting
for glacier in ["Mapple", "COL", "Crane", "DBE", "JAC", "Jorum", "SI"]:
for season in ["winter", "summer"]:
print("")
print("####################################################################")
print(f"# Results for only images in {season} and from {glacier}")
print("####################################################################")
subset_of_predictions = []
for file_name in post_processed_predicted_masks:
winter = check_whether_winter_half_year(file_name)
if not file_name[:-4].split('_')[0] == glacier:
continue
if (winter and season == "summer") or (not winter and season == "winter"):
continue
subset_of_predictions.append(file_name)
if len(subset_of_predictions) == 0: continue
_, results_gla_season = calculate_front_delineation_metric(complete_postprocessed_test_directory, subset_of_predictions, directory_of_target_fronts, bounding_boxes_directory)
results[glacier][season] = results_gla_season
return results
def visualizations(complete_postprocessed_test_directory, directory_of_target_fronts, directory_of_sar_images,
bounding_boxes_directory, visualizations_dir):
print("Creating visualizations ...\n\n")
post_processed_predicted_masks = os.listdir(os.path.join(complete_postprocessed_test_directory))
for file_name in post_processed_predicted_masks:
if not file_name.endswith('.png'):
continue
resolution = int(os.path.split(file_name)[1][:-4].split('_')[-3])
if resolution < 10:
dilation = 5
else:
dilation = 3
if file_name.endswith('_front.png'):
post_processed_predicted_mask = cv2.imread(os.path.join(complete_postprocessed_test_directory, file_name).__str__(), cv2.IMREAD_GRAYSCALE)
post_processed_predicted_mask = mask_prediction_with_bounding_box(post_processed_predicted_mask, file_name[:-len('_front.png')]+'.png', bounding_boxes_directory)
post_processed_predicted_mask[post_processed_predicted_mask > 1] =1
post_processed_predicted_mask_skeletonized = skeletonize(post_processed_predicted_mask)
post_processed_predicted_mask = np.zeros(post_processed_predicted_mask_skeletonized.shape)
post_processed_predicted_mask[post_processed_predicted_mask_skeletonized] = 255
matching_target_file = get_matching_out_of_folder(file_name[:-len('_front.png')]+'.png', directory_of_target_fronts)
target_front = cv2.imread(os.path.join(directory_of_target_fronts, matching_target_file).__str__(), cv2.IMREAD_GRAYSCALE)
matching_sar_file = get_matching_out_of_folder(file_name[:-len('_front.png')]+'.png', directory_of_sar_images)
sar_image = cv2.imread(os.path.join(directory_of_sar_images, matching_sar_file).__str__(), cv2.IMREAD_GRAYSCALE)
elif file_name.endswith('_zone.png'):
continue
elif file_name.endswith('_recon.png'):
continue
else:
post_processed_predicted_mask = cv2.imread(
os.path.join(complete_postprocessed_test_directory, file_name).__str__(), cv2.IMREAD_GRAYSCALE)
matching_target_file = get_matching_out_of_folder(file_name, directory_of_target_fronts)
target_front = cv2.imread(os.path.join(directory_of_target_fronts, matching_target_file).__str__(),cv2.IMREAD_GRAYSCALE)
matching_sar_file = get_matching_out_of_folder(file_name, directory_of_sar_images)
sar_image = cv2.imread(os.path.join(directory_of_sar_images, matching_sar_file).__str__(),cv2.IMREAD_GRAYSCALE)
predicted_front = np.array(post_processed_predicted_mask)
ground_truth_front = np.array(target_front)
kernel = np.ones((dilation, dilation), np.uint8)
predicted_front = cv2.dilate(predicted_front, kernel, iterations=1)
ground_truth_front = cv2.dilate(ground_truth_front, kernel, iterations=1)
sar_image = np.array(sar_image)
sar_image_rgb = skimage.color.gray2rgb(sar_image)
sar_image_rgb = np.uint8(sar_image_rgb)
sar_image_rgb[predicted_front > 0] = [0, 255, 255] # b, g, r
sar_image_rgb[ground_truth_front > 0] = [255, 51, 51]
correct_prediction = np.logical_and(predicted_front, ground_truth_front)
sar_image_rgb[correct_prediction > 0] = [255, 0, 255] # [51, 255, 51] # [0, 153, 0]
# Insert Bounding Box
matching_bounding_box_file = get_matching_out_of_folder(file_name, bounding_boxes_directory)
with open(os.path.join(bounding_boxes_directory, matching_bounding_box_file)) as f:
coord_file_lines = f.readlines()
left_upper_corner_x, left_upper_corner_y = [round(float(coord)) for coord in coord_file_lines[1].split(",")]
left_lower_corner_x, left_lower_corner_y = [round(float(coord)) for coord in coord_file_lines[2].split(",")]
right_lower_corner_x, right_lower_corner_y = [round(float(coord)) for coord in coord_file_lines[3].split(",")]
right_upper_corner_x, right_upper_corner_y = [round(float(coord)) for coord in coord_file_lines[4].split(",")]
bounding_box = np.zeros((len(sar_image_rgb), len(sar_image_rgb[0])))
if left_upper_corner_x < 0: left_upper_corner_x = 0
if left_lower_corner_x < 0: left_lower_corner_x = 0
if right_upper_corner_x > len(sar_image_rgb[0]): right_upper_corner_x = len(sar_image_rgb[0]) - 1
if right_lower_corner_x > len(sar_image_rgb[0]): right_lower_corner_x = len(sar_image_rgb[0]) - 1
if left_upper_corner_y > len(sar_image_rgb): left_upper_corner_y = len(sar_image_rgb) - 1
if left_lower_corner_y < 0: left_lower_corner_y = 0
if right_upper_corner_y > len(sar_image_rgb): right_upper_corner_y = len(sar_image_rgb) - 1
if right_lower_corner_y < 0: right_lower_corner_y = 0
bounding_box[left_upper_corner_y, left_upper_corner_x:right_upper_corner_x] = 1
bounding_box[left_lower_corner_y, left_lower_corner_x:right_lower_corner_x] = 1
bounding_box[left_lower_corner_y:left_upper_corner_y, left_upper_corner_x] = 1
bounding_box[right_lower_corner_y:right_upper_corner_y, right_lower_corner_x] = 1
bounding_box = cv2.dilate(bounding_box, kernel, iterations=1)
sar_image_rgb[bounding_box > 0] = [255, 255, 0]
cv2.imwrite(os.path.join(visualizations_dir, file_name), sar_image_rgb)
def main(complete_test_directory, directory_of_complete_targets_zones, directory_of_complete_targets_fronts, directory_of_sar_images):
# ###############################################################################################
# CALCULATE SEGMENTATION METRICS (IoU & Hausdorff Distance)
# ###############################################################################################
complete_predicted_masks_zones = list(file for file in os.listdir(complete_test_directory) if file.endswith('_zone.png'))
complete_predicted_masks_fronts = list(file for file in os.listdir(complete_test_directory) if file.endswith('_front.png'))
src = Path(directory_of_sar_images).parent.parent.parent
bounding_boxes_directory = os.path.join(src, "data_raw", "bounding_boxes")
results = {}
# only on zone
if len(complete_predicted_masks_zones) > 0:
results_seg = calculate_segmentation_metrics('zones', complete_predicted_masks_zones, complete_test_directory,
directory_of_complete_targets_zones,)
results['Zone_Segmentation'] = results_seg
if len(complete_predicted_masks_fronts) >0:
results_seg = calculate_segmentation_metrics('fronts', complete_predicted_masks_fronts,
complete_test_directory,
directory_of_complete_targets_fronts, )
results['Front_Segmentation'] = results_seg
# ###############################################################################################
# POST-PROCESSING
# ###############################################################################################
src = Path(directory_of_sar_images).parent.parent.parent
print(src)
if len(complete_predicted_masks_zones) > 0:
post_processing('zones', complete_predicted_masks_zones, bounding_boxes_directory, complete_test_directory)
# ###############################################################################################
# CALCULATE FRONT DELINEATION METRIC (Mean distance error)
# ###############################################################################################
if len(complete_predicted_masks_zones) > 0:
print("Front delineation from ZONE post processed")
results_zone = front_delineation_metric('zone', complete_postprocessed_test_directory, directory_of_complete_targets_fronts, bounding_boxes_directory)
results['Zone_Delineation'] = results_zone
if len(complete_predicted_masks_fronts) > 0:
print("Front delineation from FRONT directly")
results_front = front_delineation_metric('front', complete_test_directory, directory_of_complete_targets_fronts, bounding_boxes_directory)
results['Front_Delineation'] = results_front
results_file = open(complete_test_directory+'/eval_results.json', "w")
json.dump(results, results_file)
# ###############################################################################################
# MAKE VISUALIZATIONS
# ###############################################################################################
if len(complete_predicted_masks_zones) > 0:
visualizations(complete_postprocessed_test_directory, directory_of_complete_targets_fronts, directory_of_sar_images,
bounding_boxes_directory, visualizations_dir)
if len(complete_predicted_masks_fronts) > 0:
front_prediction_dir = complete_test_directory
visualizations(front_prediction_dir, directory_of_complete_targets_fronts, directory_of_sar_images,
bounding_boxes_directory, visualizations_dir)
if __name__ == "__main__":
print("Start Evaluation")
parser = ArgumentParser(add_help=False)
parser.add_argument('--predictions', help="Directory with predictions as png")
parser.add_argument('--labels_fronts', help="Directory with labels as png")
parser.add_argument('--labels_zones', help="Directory with labels as png")
parser.add_argument('--sar_images', help="Directory with sar images")
hparams = parser.parse_args()
complete_test_directory = hparams.predictions
complete_postprocessed_test_directory = os.path.join(complete_test_directory, "postprocessed")
os.makedirs(complete_postprocessed_test_directory, exist_ok=True)
visualizations_dir = os.path.join(complete_test_directory, "visualization")
os.makedirs(visualizations_dir, exist_ok=True)
main(hparams.predictions, hparams.labels_zones, hparams.labels_fronts, hparams.sar_images)
|