File size: 14,221 Bytes
ecf08bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
from typing import Tuple, List, Union
from skimage import io
import SimpleITK as sitk
import numpy as np
import tifffile
def convert_2d_image_to_nifti(input_filename: str, output_filename_truncated: str, spacing=(999, 1, 1),
transform=None, is_seg: bool = False) -> None:
"""
Reads an image (must be a format that it recognized by skimage.io.imread) and converts it into a series of niftis.
The image can have an arbitrary number of input channels which will be exported separately (_0000.nii.gz,
_0001.nii.gz, etc for images and only .nii.gz for seg).
Spacing can be ignored most of the time.
!!!2D images are often natural images which do not have a voxel spacing that could be used for resampling. These images
must be resampled by you prior to converting them to nifti!!!
Datasets converted with this utility can only be used with the 2d U-Net configuration of nnU-Net
If Transform is not None it will be applied to the image after loading.
Segmentations will be converted to np.uint32!
:param is_seg:
:param transform:
:param input_filename:
:param output_filename_truncated: do not use a file ending for this one! Example: output_name='./converted/image1'. This
function will add the suffix (_0000) and file ending (.nii.gz) for you.
:param spacing:
:return:
"""
img = io.imread(input_filename)
if transform is not None:
img = transform(img)
if len(img.shape) == 2: # 2d image with no color channels
img = img[None, None] # add dimensions
else:
assert len(img.shape) == 3, "image should be 3d with color channel last but has shape %s" % str(img.shape)
# we assume that the color channel is the last dimension. Transpose it to be in first
img = img.transpose((2, 0, 1))
# add third dimension
img = img[:, None]
# image is now (c, x, x, z) where x=1 since it's 2d
if is_seg:
assert img.shape[0] == 1, 'segmentations can only have one color channel, not sure what happened here'
for j, i in enumerate(img):
if is_seg:
i = i.astype(np.uint32)
itk_img = sitk.GetImageFromArray(i)
itk_img.SetSpacing(list(spacing)[::-1])
if not is_seg:
sitk.WriteImage(itk_img, output_filename_truncated + "_%04.0d.nii.gz" % j)
else:
sitk.WriteImage(itk_img, output_filename_truncated + ".nii.gz")
def convert_zones_image_to_nifti(input_filename: str, output_filename_truncated: str, spacing=(999, 1, 1),
transform=None, is_seg: bool = False) -> None:
"""
Reads an image (must be a format that it recognized by skimage.io.imread) and converts it into a series of niftis.
The image can have an arbitrary number of input channels which will be exported separately (_0000.nii.gz,
_0001.nii.gz, etc for images and only .nii.gz for seg).
Spacing can be ignored most of the time.
!!!2D images are often natural images which do not have a voxel spacing that could be used for resampling. These images
must be resampled by you prior to converting them to nifti!!!
Datasets converted with this utility can only be used with the 2d U-Net configuration of nnU-Net
If Transform is not None it will be applied to the image after loading.
Segmentations will be converted to np.uint32!
:param is_seg:
:param transform:
:param input_filename:
:param output_filename_truncated: do not use a file ending for this one! Example: output_name='./converted/image1'. This
function will add the suffix (_0000) and file ending (.nii.gz) for you.
:param spacing:
:return:
"""
img = io.imread(input_filename)
new_image = np.zeros_like(img)
new_image[img == 0] = 0 # background
new_image[img == 64] = 1 # stone
new_image[img == 127] = 2 # glacier
new_image[img == 254] = 3 # ocean
new_image[img == 32] = 4 # front if exists
img = new_image
if len(img.shape) == 2: # 2d image with no color channels
img = img[None, None] # add dimensions
else:
assert len(img.shape) == 3, "image should be 3d with color channel last but has shape %s" % str(img.shape)
# we assume that the color channel is the last dimension. Transpose it to be in first
img = img.transpose((2, 0, 1))
# add third dimension
img = img[:, None]
# image is now (c, x, x, z) where x=1 since it's 2d
if is_seg:
assert img.shape[0] == 1, 'segmentations can only have one color channel, not sure what happened here'
for j, i in enumerate(img):
if is_seg:
i = i.astype(np.uint32)
itk_img = sitk.GetImageFromArray(i)
itk_img.SetSpacing(list(spacing)[::-1])
if not is_seg:
sitk.WriteImage(itk_img, output_filename_truncated + "_%04.0d.nii.gz" % j)
else:
sitk.WriteImage(itk_img, output_filename_truncated + ".nii.gz")
def convert_mtl_image_to_nifti(front_filename: str, zone_filename: str, output_filename_truncated: str, spacing=(999, 1, 1),
transform=None, is_seg: bool = False) -> None:
"""
Reads an image (must be a format that it recognized by skimage.io.imread) and converts it into a series of niftis.
The image can have an arbitrary number of input channels which will be exported separately (_0000.nii.gz,
_0001.nii.gz, etc for images and only .nii.gz for seg).
Spacing can be ignored most of the time.
!!!2D images are often natural images which do not have a voxel spacing that could be used for resampling. These images
must be resampled by you prior to converting them to nifti!!!
Datasets converted with this utility can only be used with the 2d U-Net configuration of nnU-Net
If Transform is not None it will be applied to the image after loading.
Segmentations will be converted to np.uint32!
:param is_seg:
:param transform:
:param input_filename:
:param output_filename_truncated: do not use a file ending for this one! Example: output_name='./converted/image1'. This
function will add the suffix (_0000) and file ending (.nii.gz) for you.
:param spacing:
:return:
"""
front = io.imread(front_filename)
zone = io.imread(zone_filename)
new_front = np.zeros_like(front)
new_front[front == 255] = 1
new_zone = np.zeros_like(zone)
new_zone[zone == 0] = 0 # background
new_zone[zone == 64] = 1 # stone
new_zone[zone == 127] = 2 # glacier
new_zone[zone == 254] = 3 # ocean
# combine two labels
img = np.array([new_front, new_zone])
img = img[None] # add dimensions
# image is now (c, x, x, z) where x=1 since it's 2d
if is_seg:
assert img.shape[0] == 1, 'segmentations can only have one color channel, not sure what happened here'
for j, i in enumerate(img):
if is_seg:
i = i.astype(np.uint32)
itk_img = sitk.GetImageFromArray(i)
itk_img.SetSpacing(list(spacing)[::-1])
if not is_seg:
sitk.WriteImage(itk_img, output_filename_truncated + "_%04.0d.nii.gz" % j)
else:
sitk.WriteImage(itk_img, output_filename_truncated + ".nii.gz")
def convert_mtl_recon_image_to_nifti(image_filename: str, front_filename: str, zone_filename: str, output_filename_truncated: str, spacing=(999, 1, 1),
transform=None, is_seg: bool = False) -> None:
"""
Reads an image (must be a format that it recognized by skimage.io.imread) and converts it into a series of niftis.
The image can have an arbitrary number of input channels which will be exported separately (_0000.nii.gz,
_0001.nii.gz, etc for images and only .nii.gz for seg).
Spacing can be ignored most of the time.
!!!2D images are often natural images which do not have a voxel spacing that could be used for resampling. These images
must be resampled by you prior to converting them to nifti!!!
Datasets converted with this utility can only be used with the 2d U-Net configuration of nnU-Net
If Transform is not None it will be applied to the image after loading.
Segmentations will be converted to np.uint32!
:param is_seg:
:param transform:
:param input_filename:
:param output_filename_truncated: do not use a file ending for this one! Example: output_name='./converted/image1'. This
function will add the suffix (_0000) and file ending (.nii.gz) for you.
:param spacing:
:return:
"""
image = io.imread(image_filename)
front = io.imread(front_filename)
zone = io.imread(zone_filename)
new_front = np.zeros_like(front)
new_front[front == 255] = 1
new_zone = np.zeros_like(zone)
new_zone[zone == 0] = 0 # background
new_zone[zone == 64] = 1 # stone
new_zone[zone == 127] = 2 # glacier
new_zone[zone == 254] = 3 # ocean
# combine two labels
img = np.array([new_front, new_zone, image])
img = img[None] # add dimensions
# image is now (c, x, x, z) where x=1 since it's 2d
if is_seg:
assert img.shape[0] == 1, 'segmentations can only have one color channel, not sure what happened here'
for j, i in enumerate(img):
if is_seg:
i = i.astype(np.uint32)
itk_img = sitk.GetImageFromArray(i)
itk_img.SetSpacing(list(spacing)[::-1])
if not is_seg:
sitk.WriteImage(itk_img, output_filename_truncated + "_%04.0d.nii.gz" % j)
else:
sitk.WriteImage(itk_img, output_filename_truncated + ".nii.gz")
def convert_mtl_boundary_image_to_nifti(front_filename: str, zone_filename: str, boundary_filename: str, output_filename_truncated: str, spacing=(999, 1, 1),
transform=None, is_seg: bool = False) -> None:
"""
Reads an image (must be a format that it recognized by skimage.io.imread) and converts it into a series of niftis.
The image can have an arbitrary number of input channels which will be exported separately (_0000.nii.gz,
_0001.nii.gz, etc for images and only .nii.gz for seg).
Spacing can be ignored most of the time.
!!!2D images are often natural images which do not have a voxel spacing that could be used for resampling. These images
must be resampled by you prior to converting them to nifti!!!
Datasets converted with this utility can only be used with the 2d U-Net configuration of nnU-Net
If Transform is not None it will be applied to the image after loading.
Segmentations will be converted to np.uint32!
:param is_seg:
:param transform:
:param input_filename:
:param output_filename_truncated: do not use a file ending for this one! Example: output_name='./converted/image1'. This
function will add the suffix (_0000) and file ending (.nii.gz) for you.
:param spacing:
:return:
"""
front = io.imread(front_filename)
zone = io.imread(zone_filename)
boundary = io.imread(boundary_filename)
new_front = np.zeros_like(front)
new_front[front == 255] = 1
new_zone = np.zeros_like(zone)
new_zone[zone == 0] = 0 # background
new_zone[zone == 64] = 1 # stone
new_zone[zone == 127] = 2 # glacier
new_zone[zone == 254] = 3 # ocean
new_boundary = np.zeros_like(front)
new_boundary[boundary==255] = 1
# combine two labels
img = np.array([new_front, new_zone, new_boundary])
img = img[None] # add dimensions
# image is now (c, x, x, z) where x=1 since it's 2d
if is_seg:
assert img.shape[0] == 1, 'segmentations can only have one color channel, not sure what happened here'
if is_seg:
img = img.astype(np.uint32)
for j, i in enumerate(img):
itk_img = sitk.GetImageFromArray(i)
itk_img.SetSpacing(list(spacing)[::-1])
if not is_seg:
sitk.WriteImage(itk_img, output_filename_truncated + "_%04.0d.nii.gz" % j)
else:
sitk.WriteImage(itk_img, output_filename_truncated + ".nii.gz")
def convert_3d_tiff_to_nifti(filenames: List[str], output_name: str, spacing: Union[tuple, list], transform=None,
is_seg=False) -> None:
"""
filenames must be a list of strings, each pointing to a separate 3d tiff file. One file per modality. If your data
only has one imaging modality, simply pass a list with only a single entry
Files in filenames must be readable with
Note: we always only pass one file into tifffile.imread, not multiple (even though it supports it). This is because
I am not familiar enough with this functionality and would like to have control over what happens.
If Transform is not None it will be applied to the image after loading.
:param transform:
:param filenames:
:param output_name:
:param spacing:
:return:
"""
if is_seg:
assert len(filenames) == 1
for j, i in enumerate(filenames):
img = tifffile.imread(i)
if transform is not None:
img = transform(img)
itk_img = sitk.GetImageFromArray(img)
itk_img.SetSpacing(list(spacing)[::-1])
if not is_seg:
sitk.WriteImage(itk_img, output_name + "_%04.0d.nii.gz" % j)
else:
sitk.WriteImage(itk_img, output_name + ".nii.gz")
def convert_2d_segmentation_nifti_to_img(nifti_file: str, output_filename: str, transform=None, export_dtype=np.uint8):
img = sitk.GetArrayFromImage(sitk.ReadImage(nifti_file))
assert img.shape[0] == 1, "This function can only export 2D segmentations!"
img = img[0]
if transform is not None:
img = transform(img)
io.imsave(output_filename, img.astype(export_dtype), check_contrast=False)
def convert_3d_segmentation_nifti_to_tiff(nifti_file: str, output_filename: str, transform=None, export_dtype=np.uint8):
img = sitk.GetArrayFromImage(sitk.ReadImage(nifti_file))
assert len(img.shape) == 3, "This function can only export 3D segmentations!"
if transform is not None:
img = transform(img)
tifffile.imsave(output_filename, img.astype(export_dtype))
|