File size: 19,442 Bytes
ecf08bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import inspect
import json
import hashlib
from datetime import datetime
from multiprocessing.pool import Pool
import numpy as np
import pandas as pd
import SimpleITK as sitk
from nnunet.evaluation.metrics import ConfusionMatrix, ALL_METRICS
from batchgenerators.utilities.file_and_folder_operations import save_json, subfiles, join
from collections import OrderedDict
class Evaluator:
"""Object that holds test and reference segmentations with label information
and computes a number of metrics on the two. 'labels' must either be an
iterable of numeric values (or tuples thereof) or a dictionary with string
names and numeric values.
"""
default_metrics = [
"False Positive Rate",
"Dice",
"Jaccard",
"Precision",
"Recall",
"Accuracy",
"False Omission Rate",
"Negative Predictive Value",
"False Negative Rate",
"True Negative Rate",
"False Discovery Rate",
"Total Positives Test",
"Total Positives Reference"
]
default_advanced_metrics = [
# "Hausdorff Distance",
"Hausdorff Distance 95",
# "Avg. Surface Distance",
# "Avg. Symmetric Surface Distance"
]
def __init__(self,
test=None,
reference=None,
labels=None,
metrics=None,
advanced_metrics=None,
nan_for_nonexisting=True):
self.test = None
self.reference = None
self.confusion_matrix = ConfusionMatrix()
self.labels = None
self.nan_for_nonexisting = nan_for_nonexisting
self.result = None
self.metrics = []
if metrics is None:
for m in self.default_metrics:
self.metrics.append(m)
else:
for m in metrics:
self.metrics.append(m)
self.advanced_metrics = []
if advanced_metrics is None:
for m in self.default_advanced_metrics:
self.advanced_metrics.append(m)
else:
for m in advanced_metrics:
self.advanced_metrics.append(m)
self.set_reference(reference)
self.set_test(test)
if labels is not None:
self.set_labels(labels)
else:
if test is not None and reference is not None:
self.construct_labels()
def set_test(self, test):
"""Set the test segmentation."""
self.test = test
def set_reference(self, reference):
"""Set the reference segmentation."""
self.reference = reference
def set_labels(self, labels):
"""Set the labels.
:param labels= may be a dictionary (int->str), a set (of ints), a tuple (of ints) or a list (of ints). Labels
will only have names if you pass a dictionary"""
if isinstance(labels, dict):
self.labels = collections.OrderedDict(labels)
elif isinstance(labels, set):
self.labels = list(labels)
elif isinstance(labels, np.ndarray):
self.labels = [i for i in labels]
elif isinstance(labels, (list, tuple)):
self.labels = labels
else:
raise TypeError(
"Can only handle dict, list, tuple, set & numpy array, but input is of type {}".format(type(labels)))
def construct_labels(self):
"""Construct label set from unique entries in segmentations."""
if self.test is None and self.reference is None:
raise ValueError("No test or reference segmentations.")
elif self.test is None:
labels = np.unique(self.reference)
else:
labels = np.union1d(np.unique(self.test),
np.unique(self.reference))
self.labels = list(map(lambda x: int(x), labels))
def set_metrics(self, metrics):
"""Set evaluation metrics"""
if isinstance(metrics, set):
self.metrics = list(metrics)
elif isinstance(metrics, (list, tuple, np.ndarray)):
self.metrics = metrics
else:
raise TypeError(
"Can only handle list, tuple, set & numpy array, but input is of type {}".format(type(metrics)))
def add_metric(self, metric):
if metric not in self.metrics:
self.metrics.append(metric)
def evaluate(self, test=None, reference=None, advanced=False, **metric_kwargs):
"""Compute metrics for segmentations."""
if test is not None:
self.set_test(test)
if reference is not None:
self.set_reference(reference)
if self.test is None or self.reference is None:
raise ValueError("Need both test and reference segmentations.")
if self.labels is None:
self.construct_labels()
self.metrics.sort()
# get functions for evaluation
# somewhat convoluted, but allows users to define additonal metrics
# on the fly, e.g. inside an IPython console
_funcs = {m: ALL_METRICS[m] for m in self.metrics + self.advanced_metrics}
frames = inspect.getouterframes(inspect.currentframe())
for metric in self.metrics:
for f in frames:
if metric in f[0].f_locals:
_funcs[metric] = f[0].f_locals[metric]
break
else:
if metric in _funcs:
continue
else:
raise NotImplementedError(
"Metric {} not implemented.".format(metric))
# get results
self.result = OrderedDict()
eval_metrics = self.metrics
if advanced:
eval_metrics += self.advanced_metrics
if isinstance(self.labels, dict):
for label, name in self.labels.items():
k = str(name)
self.result[k] = OrderedDict()
if not hasattr(label, "__iter__"):
self.confusion_matrix.set_test(self.test == label)
self.confusion_matrix.set_reference(self.reference == label)
else:
current_test = 0
current_reference = 0
for l in label:
current_test += (self.test == l)
current_reference += (self.reference == l)
self.confusion_matrix.set_test(current_test)
self.confusion_matrix.set_reference(current_reference)
for metric in eval_metrics:
self.result[k][metric] = _funcs[metric](confusion_matrix=self.confusion_matrix,
nan_for_nonexisting=self.nan_for_nonexisting,
**metric_kwargs)
else:
for j, label in enumerate(self.labels):
self.result[j] = OrderedDict()
for i, l in enumerate(label):
# TODO add second label (Done)
k = str(l)
self.result[j][k] = OrderedDict()
self.confusion_matrix.set_test(self.test[j] == l)
self.confusion_matrix.set_reference(self.reference[j] == l)
for metric in eval_metrics:
self.result[j][k][metric] = _funcs[metric](confusion_matrix=self.confusion_matrix,
nan_for_nonexisting=self.nan_for_nonexisting,
**metric_kwargs)
return self.result
def to_dict(self):
if self.result is None:
self.evaluate()
return self.result
def to_array(self):
"""Return result as numpy array (labels x metrics)."""
if self.result is None:
self.evaluate
result_metrics = sorted(self.result[list(self.result.keys())[0]].keys())
a = np.zeros((len(self.labels), len(result_metrics)), dtype=np.float32)
if isinstance(self.labels, dict):
for i, label in enumerate(self.labels.keys()):
for j, metric in enumerate(result_metrics):
a[i][j] = self.result[self.labels[label]][metric]
else:
for i, label in enumerate(self.labels):
for j, metric in enumerate(result_metrics):
a[i][j] = self.result[label][metric]
return a
def to_pandas(self):
"""Return result as pandas DataFrame."""
a = self.to_array()
if isinstance(self.labels, dict):
labels = list(self.labels.values())
else:
labels = self.labels
result_metrics = sorted(self.result[list(self.result.keys())[0]].keys())
return pd.DataFrame(a, index=labels, columns=result_metrics)
class NiftiEvaluator(Evaluator):
def __init__(self, *args, **kwargs):
self.test_nifti = None
self.reference_nifti = None
super(NiftiEvaluator, self).__init__(*args, **kwargs)
def set_test(self, test):
"""Set the test segmentation."""
if test is not None:
# TODO test images has only zone prediction Look at the code where image is saved. (Done)
self.test_nifti = sitk.ReadImage(test)
super(NiftiEvaluator, self).set_test(sitk.GetArrayFromImage(self.test_nifti))
else:
self.test_nifti = None
super(NiftiEvaluator, self).set_test(test)
def set_reference(self, reference):
"""Set the reference segmentation."""
if reference is not None:
self.reference_nifti = sitk.ReadImage(reference)
super(NiftiEvaluator, self).set_reference(sitk.GetArrayFromImage(self.reference_nifti))
else:
self.reference_nifti = None
super(NiftiEvaluator, self).set_reference(reference)
def evaluate(self, test=None, reference=None, voxel_spacing=None, **metric_kwargs):
if voxel_spacing is None:
voxel_spacing = np.array(self.test_nifti.GetSpacing())[::-1]
metric_kwargs["voxel_spacing"] = voxel_spacing
return super(NiftiEvaluator, self).evaluate(test, reference, **metric_kwargs)
def run_evaluation(args):
test, ref, evaluator, metric_kwargs = args
# evaluate
evaluator.set_test(test)
evaluator.set_reference(ref)
if evaluator.labels is None:
evaluator.construct_labels()
current_scores = evaluator.evaluate(**metric_kwargs)
if type(test) == str:
current_scores["test"] = test
if type(ref) == str:
current_scores["reference"] = ref
return current_scores
def aggregate_scores(test_ref_pairs,
evaluator=NiftiEvaluator,
labels=None,
nanmean=True,
json_output_file=None,
json_name="",
json_description="",
json_author="Fabian",
json_task="",
num_threads=2,
**metric_kwargs):
"""
test = predicted image
:param test_ref_pairs:
:param evaluator:
:param labels: must be a dict of int-> str or a list of int
:param nanmean:
:param json_output_file:
:param json_name:
:param json_description:
:param json_author:
:param json_task:
:param metric_kwargs:
:return:
"""
if type(evaluator) == type:
evaluator = evaluator()
if labels is not None:
evaluator.set_labels(labels)
test = [i[0] for i in test_ref_pairs]
ref = [i[1] for i in test_ref_pairs]
# all_res= [run_evaluation((test[0], ref[0], evaluator, metric_kwargs))]
p = Pool(num_threads)
all_res = p.map(run_evaluation, zip(test, ref, [evaluator] * len(ref), [metric_kwargs] * len(ref)))
p.close()
p.join()
all_scores = OrderedDict()
for mask in range(len(labels)):
all_scores[mask] = OrderedDict()
all_scores[mask]["all"] = []
all_scores[mask]["mean"] = OrderedDict()
for i in range(len(all_res)):
all_scores[mask]["all"].append(all_res[i][mask])
# append score list for mean
for label, score_dict in all_res[i][mask].items():
if label in ("test", "reference"):
continue
if label not in all_scores[mask]["mean"]:
all_scores[mask]["mean"][label] = OrderedDict()
for score, value in score_dict.items():
if score not in all_scores[mask]["mean"][label]:
all_scores[mask]["mean"][label][score] = []
all_scores[mask]["mean"][label][score].append(value)
for label in all_scores[mask]["mean"]:
for score in all_scores[mask]["mean"][label]:
if nanmean:
all_scores[mask]["mean"][label][score] = float(np.nanmean(all_scores[mask]["mean"][label][score]))
else:
all_scores[mask]["mean"][label][score] = float(np.mean(all_scores[mask]["mean"][label][score]))
# save to file if desired
# we create a hopefully unique id by hashing the entire output dictionary
if json_output_file is not None:
json_dict = OrderedDict()
json_dict["name"] = json_name
json_dict["description"] = json_description
timestamp = datetime.today()
json_dict["timestamp"] = str(timestamp)
json_dict["task"] = json_task
json_dict["author"] = json_author
json_dict["results"] = all_scores
json_dict["id"] = hashlib.md5(json.dumps(json_dict).encode("utf-8")).hexdigest()[:12]
save_json(json_dict, json_output_file)
return all_scores
def aggregate_scores_for_experiment(score_file,
labels=None,
metrics=Evaluator.default_metrics,
nanmean=True,
json_output_file=None,
json_name="",
json_description="",
json_author="Fabian",
json_task=""):
scores = np.load(score_file)
scores_mean = scores.mean(0)
if labels is None:
labels = list(map(str, range(scores.shape[1])))
results = []
results_mean = OrderedDict()
for i in range(scores.shape[0]):
results.append(OrderedDict())
for l, label in enumerate(labels):
results[-1][label] = OrderedDict()
results_mean[label] = OrderedDict()
for m, metric in enumerate(metrics):
results[-1][label][metric] = float(scores[i][l][m])
results_mean[label][metric] = float(scores_mean[l][m])
json_dict = OrderedDict()
json_dict["name"] = json_name
json_dict["description"] = json_description
timestamp = datetime.today()
json_dict["timestamp"] = str(timestamp)
json_dict["task"] = json_task
json_dict["author"] = json_author
json_dict["results"] = {"all": results, "mean": results_mean}
json_dict["id"] = hashlib.md5(json.dumps(json_dict).encode("utf-8")).hexdigest()[:12]
if json_output_file is not None:
json_output_file = open(json_output_file, "w")
json.dump(json_dict, json_output_file, indent=4, separators=(",", ": "))
json_output_file.close()
return json_dict
def evaluate_folder(folder_with_gts: str, folder_with_predictions: str, labels: tuple, **metric_kwargs):
"""
writes a summary.json to folder_with_predictions
:param folder_with_gts: folder where the ground truth segmentations are saved. Must be nifti files.
:param folder_with_predictions: folder where the predicted segmentations are saved. Must be nifti files.
:param labels: tuple of int with the labels in the dataset. For example (0, 1, 2, 3) for Task001_BrainTumour.
:return:
"""
files_gt = subfiles(folder_with_gts, suffix=".nii.gz", join=False)
files_pred = subfiles(folder_with_predictions, suffix=".nii.gz", join=False)
assert all([i in files_pred for i in files_gt]), "files missing in folder_with_predictions"
assert all([i in files_gt for i in files_pred]), "files missing in folder_with_gts"
test_ref_pairs = [(join(folder_with_predictions, i), join(folder_with_gts, i)) for i in files_pred]
res = aggregate_scores(test_ref_pairs, json_output_file=join(folder_with_predictions, "summary.json"),
num_threads=8, labels=labels, **metric_kwargs)
return res
def nnunet_evaluate_folder():
import argparse
parser = argparse.ArgumentParser("Evaluates the segmentations located in the folder pred. Output of this script is "
"a json file. At the very bottom of the json file is going to be a 'mean' "
"entry with averages metrics across all cases")
parser.add_argument('-ref', required=True, type=str, help="Folder containing the reference segmentations in nifti "
"format.")
parser.add_argument('-pred', required=True, type=str, help="Folder containing the predicted segmentations in nifti "
"format. File names must match between the folders!")
parser.add_argument('-l', nargs='+', type=int, required=True, help="List of label IDs (integer values) that should "
"be evaluated. Best practice is to use all int "
"values present in the dataset, so for example "
"for LiTS the labels are 0: background, 1: "
"liver, 2: tumor. So this argument "
"should be -l 1 2. You can if you want also "
"evaluate the background label (0) but in "
"this case that would not gie any useful "
"information.")
args = parser.parse_args()
return evaluate_folder(args.ref, args.pred, args.l)
|