File size: 9,030 Bytes
ecf08bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#    Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

from copy import deepcopy

from batchgenerators.transforms.abstract_transforms import AbstractTransform
from skimage.morphology import label, ball
from skimage.morphology.binary import binary_erosion, binary_dilation, binary_closing, binary_opening
import numpy as np


class RemoveRandomConnectedComponentFromOneHotEncodingTransform(AbstractTransform):
    def __init__(self, channel_idx, key="data", p_per_sample=0.2, fill_with_other_class_p=0.25,
                 dont_do_if_covers_more_than_X_percent=0.25, p_per_label=1):
        """
        :param dont_do_if_covers_more_than_X_percent: dont_do_if_covers_more_than_X_percent=0.25 is 25\%!
        :param channel_idx: can be list or int
        :param key:
        """
        self.p_per_label = p_per_label
        self.dont_do_if_covers_more_than_X_percent = dont_do_if_covers_more_than_X_percent
        self.fill_with_other_class_p = fill_with_other_class_p
        self.p_per_sample = p_per_sample
        self.key = key
        if not isinstance(channel_idx, (list, tuple)):
            channel_idx = [channel_idx]
        self.channel_idx = channel_idx

    def __call__(self, **data_dict):
        data = data_dict.get(self.key)
        for b in range(data.shape[0]):
            if np.random.uniform() < self.p_per_sample:
                for c in self.channel_idx:
                    if np.random.uniform() < self.p_per_label:
                        workon = np.copy(data[b, c])
                        num_voxels = np.prod(workon.shape, dtype=np.uint64)
                        lab, num_comp = label(workon, return_num=True)
                        if num_comp > 0:
                            component_ids = []
                            component_sizes = []
                            for i in range(1, num_comp + 1):
                                component_ids.append(i)
                                component_sizes.append(np.sum(lab == i))
                            component_ids = [i for i, j in zip(component_ids, component_sizes) if j < num_voxels*self.dont_do_if_covers_more_than_X_percent]
                            #_ = component_ids.pop(np.argmax(component_sizes))
                            #else:
                            #    component_ids = list(range(1, num_comp + 1))
                            if len(component_ids) > 0:
                                random_component = np.random.choice(component_ids)
                                data[b, c][lab == random_component] = 0
                                if np.random.uniform() < self.fill_with_other_class_p:
                                    other_ch = [i for i in self.channel_idx if i != c]
                                    if len(other_ch) > 0:
                                        other_class = np.random.choice(other_ch)
                                        data[b, other_class][lab == random_component] = 1
        data_dict[self.key] = data
        return data_dict


class MoveSegAsOneHotToData(AbstractTransform):
    def __init__(self, channel_id, all_seg_labels, key_origin="seg", key_target="data", remove_from_origin=True):
        self.remove_from_origin = remove_from_origin
        self.all_seg_labels = all_seg_labels
        self.key_target = key_target
        self.key_origin = key_origin
        self.channel_id = channel_id

    def __call__(self, **data_dict):
        origin = data_dict.get(self.key_origin)
        target = data_dict.get(self.key_target)
        seg = origin[:, self.channel_id:self.channel_id+1]
        seg_onehot = np.zeros((seg.shape[0], len(self.all_seg_labels), *seg.shape[2:]), dtype=seg.dtype)
        for i, l in enumerate(self.all_seg_labels):
            seg_onehot[:, i][seg[:, 0] == l] = 1
        target = np.concatenate((target, seg_onehot), 1)
        data_dict[self.key_target] = target

        if self.remove_from_origin:
            remaining_channels = [i for i in range(origin.shape[1]) if i != self.channel_id]
            origin = origin[:, remaining_channels]
            data_dict[self.key_origin] = origin
        return data_dict


class ApplyRandomBinaryOperatorTransform(AbstractTransform):
    def __init__(self, channel_idx, p_per_sample=0.3, any_of_these=(binary_dilation, binary_erosion, binary_closing,
                                                                    binary_opening),
                 key="data", strel_size=(1, 10), p_per_label=1):
        self.p_per_label = p_per_label
        self.strel_size = strel_size
        self.key = key
        self.any_of_these = any_of_these
        self.p_per_sample = p_per_sample

        assert not isinstance(channel_idx, tuple), "bäh"

        if not isinstance(channel_idx, list):
            channel_idx = [channel_idx]
        self.channel_idx = channel_idx

    def __call__(self, **data_dict):
        data = data_dict.get(self.key)
        for b in range(data.shape[0]):
            if np.random.uniform() < self.p_per_sample:
                ch = deepcopy(self.channel_idx)
                np.random.shuffle(ch)
                for c in ch:
                    if np.random.uniform() < self.p_per_label:
                        operation = np.random.choice(self.any_of_these)
                        selem = ball(np.random.uniform(*self.strel_size))
                        workon = np.copy(data[b, c]).astype(int)
                        res = operation(workon, selem).astype(workon.dtype)
                        data[b, c] = res

                        # if class was added, we need to remove it in ALL other channels to keep one hot encoding
                        # properties
                        # we modify data
                        other_ch = [i for i in ch if i != c]
                        if len(other_ch) > 0:
                            was_added_mask = (res - workon) > 0
                            for oc in other_ch:
                                data[b, oc][was_added_mask] = 0
                            # if class was removed, leave it at background
        data_dict[self.key] = data
        return data_dict


class ApplyRandomBinaryOperatorTransform2(AbstractTransform):
    def __init__(self, channel_idx, p_per_sample=0.3, p_per_label=0.3, any_of_these=(binary_dilation, binary_closing),
                 key="data", strel_size=(1, 10)):
        """
        2019_11_22: I have no idea what the purpose of this was...

        the same as above but here we should use only expanding operations. Expansions will replace other labels
        :param channel_idx: can be list or int
        :param p_per_sample:
        :param any_of_these:
        :param fill_diff_with_other_class:
        :param key:
        :param strel_size:
        """
        self.strel_size = strel_size
        self.key = key
        self.any_of_these = any_of_these
        self.p_per_sample = p_per_sample
        self.p_per_label = p_per_label

        assert not isinstance(channel_idx, tuple), "bäh"

        if not isinstance(channel_idx, list):
            channel_idx = [channel_idx]
        self.channel_idx = channel_idx

    def __call__(self, **data_dict):
        data = data_dict.get(self.key)
        for b in range(data.shape[0]):
            if np.random.uniform() < self.p_per_sample:
                ch = deepcopy(self.channel_idx)
                np.random.shuffle(ch)
                for c in ch:
                    if np.random.uniform() < self.p_per_label:
                        operation = np.random.choice(self.any_of_these)
                        selem = ball(np.random.uniform(*self.strel_size))
                        workon = np.copy(data[b, c]).astype(int)
                        res = operation(workon, selem).astype(workon.dtype)
                        data[b, c] = res

                        # if class was added, we need to remove it in ALL other channels to keep one hot encoding
                        # properties
                        # we modify data
                        other_ch = [i for i in ch if i != c]
                        if len(other_ch) > 0:
                            was_added_mask = (res - workon) > 0
                            for oc in other_ch:
                                data[b, oc][was_added_mask] = 0
                            # if class was removed, leave it at backgound
        data_dict[self.key] = data
        return data_dict