File size: 12,328 Bytes
ecf08bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from multiprocessing import Pool
import SimpleITK as sitk
import nibabel as nib
import numpy as np
from batchgenerators.utilities.file_and_folder_operations import *
from nnunet.configuration import default_num_threads
def verify_all_same_orientation(folder):
"""
This should run after cropping
:param folder:
:return:
"""
nii_files = subfiles(folder, suffix=".nii.gz", join=True)
orientations = []
for n in nii_files:
img = nib.load(n)
affine = img.affine
orientation = nib.aff2axcodes(affine)
orientations.append(orientation)
# now we need to check whether they are all the same
orientations = np.array(orientations)
unique_orientations = np.unique(orientations, axis=0)
all_same = len(unique_orientations) == 1
return all_same, unique_orientations
def verify_same_geometry(img_1: sitk.Image, img_2: sitk.Image):
ori1, spacing1, direction1, size1 = img_1.GetOrigin(), img_1.GetSpacing(), img_1.GetDirection(), img_1.GetSize()
ori2, spacing2, direction2, size2 = img_2.GetOrigin(), img_2.GetSpacing(), img_2.GetDirection(), img_2.GetSize()
same_ori = np.all(np.isclose(ori1, ori2))
if not same_ori:
print("the origin does not match between the images:")
print(ori1)
print(ori2)
same_spac = np.all(np.isclose(spacing1, spacing2))
if not same_spac:
print("the spacing does not match between the images")
print(spacing1)
print(spacing2)
same_dir = np.all(np.isclose(direction1, direction2))
if not same_dir:
print("the direction does not match between the images")
print(direction1)
print(direction2)
#same_size = np.all(np.isclose(size1, size2))
same_size = np.all(np.isclose(size1[:-1], size2[:-1]))
if not same_size:
print("the size does not match between the images")
print(size1)
print(size2)
if same_ori and same_spac and same_dir and same_size:
return True
else:
return False
def verify_contains_only_expected_labels(itk_img: str, valid_labels: (tuple, list)):
img_npy = sitk.GetArrayFromImage(sitk.ReadImage(itk_img))
uniques = np.unique(img_npy)
invalid_uniques = [i for i in uniques if i not in valid_labels]
if len(invalid_uniques) == 0:
r = True
else:
r = False
return r, invalid_uniques
def verify_dataset_integrity(folder):
"""
folder needs the imagesTr, imagesTs and labelsTr subfolders. There also needs to be a dataset.json
checks if all training cases and labels are present
checks if all test cases (if any) are present
for each case, checks whether all modalities apre present
for each case, checks whether the pixel grids are aligned
checks whether the labels really only contain values they should
:param folder:
:return:
"""
assert isfile(join(folder, "dataset.json")), "There needs to be a dataset.json file in folder, folder=%s" % folder
assert isdir(join(folder, "imagesTr")), "There needs to be a imagesTr subfolder in folder, folder=%s" % folder
assert isdir(join(folder, "labelsTr")), "There needs to be a labelsTr subfolder in folder, folder=%s" % folder
dataset = load_json(join(folder, "dataset.json"))
training_cases = dataset['training']
num_modalities = len(dataset['modality'].keys())
test_cases = dataset['test']
expected_train_identifiers = [i['image'].split("/")[-1][:-7] for i in training_cases]
expected_test_identifiers = [i.split("/")[-1][:-7] for i in test_cases]
## check training set
nii_files_in_imagesTr = subfiles((join(folder, "imagesTr")), suffix=".nii.gz", join=False)
nii_files_in_labelsTr = subfiles((join(folder, "labelsTr")), suffix=".nii.gz", join=False)
label_files = []
geometries_OK = True
has_nan = False
# check all cases
if len(expected_train_identifiers) != len(np.unique(expected_train_identifiers)): raise RuntimeError("found duplicate training cases in dataset.json")
print("Verifying training set")
for c in expected_train_identifiers:
print("checking case", c)
# check if all files are present
expected_label_file = join(folder, "labelsTr", c + ".nii.gz")
label_files.append(expected_label_file)
expected_image_files = [join(folder, "imagesTr", c + "_%04.0d.nii.gz" % i) for i in range(num_modalities)]
assert isfile(expected_label_file), "could not find label file for case %s. Expected file: \n%s" % (
c, expected_label_file)
assert all([isfile(i) for i in
expected_image_files]), "some image files are missing for case %s. Expected files:\n %s" % (
c, expected_image_files)
# verify that all modalities and the label have the same shape and geometry.
label_itk = sitk.ReadImage(expected_label_file)
nans_in_seg = np.any(np.isnan(sitk.GetArrayFromImage(label_itk)))
has_nan = has_nan | nans_in_seg
if nans_in_seg:
print("There are NAN values in segmentation %s" % expected_label_file)
images_itk = [sitk.ReadImage(i) for i in expected_image_files]
for i, img in enumerate(images_itk):
nans_in_image = np.any(np.isnan(sitk.GetArrayFromImage(img)))
has_nan = has_nan | nans_in_image
same_geometry = verify_same_geometry(img, label_itk)
if not same_geometry:
geometries_OK = False
print("The geometry of the image %s does not match the geometry of the label file. The pixel arrays "
"will not be aligned and nnU-Net cannot use this data. Please make sure your image modalities "
"are coregistered and have the same geometry as the label" % expected_image_files[0][:-12])
if nans_in_image:
print("There are NAN values in image %s" % expected_image_files[i])
# now remove checked files from the lists nii_files_in_imagesTr and nii_files_in_labelsTr
for i in expected_image_files:
nii_files_in_imagesTr.remove(os.path.basename(i))
nii_files_in_labelsTr.remove(os.path.basename(expected_label_file))
# check for stragglers
assert len(
nii_files_in_imagesTr) == 0, "there are training cases in imagesTr that are not listed in dataset.json: %s" % nii_files_in_imagesTr
assert len(
nii_files_in_labelsTr) == 0, "there are training cases in labelsTr that are not listed in dataset.json: %s" % nii_files_in_labelsTr
# verify that only properly declared values are present in the labels
print("Verifying label values")
fail = False
for label in dataset['labels'].values():
expected_labels = list(int(i) for i in label.keys())
# check if labels are in consecutive order
assert expected_labels[0] == 0, 'The first label must be 0 and maps to the background'
labels_valid_consecutive = np.ediff1d(expected_labels) == 1
assert all(labels_valid_consecutive), f'Labels must be in consecutive order (0, 1, 2, ...). The labels {np.array(expected_labels)[1:][~labels_valid_consecutive]} do not satisfy this restriction'
p = Pool(default_num_threads)
results = p.starmap(verify_contains_only_expected_labels, zip(label_files, [expected_labels] * len(label_files)))
p.close()
p.join()
print("Expected label values are", expected_labels)
for i, r in enumerate(results):
if not r[0]:
print("Unexpected labels found in file %s. Found these unexpected values (they should not be there) %s" % (
label_files[i], r[1]))
fail = True
if fail:
raise AssertionError(
"Found unexpected labels in the training dataset. Please correct that or adjust your dataset.json accordingly")
else:
print("Labels OK")
# check test set, but only if there actually is a test set
if len(expected_test_identifiers) > 0:
print("Verifying test set")
nii_files_in_imagesTs = subfiles((join(folder, "imagesTs")), suffix=".nii.gz", join=False)
for c in expected_test_identifiers:
# check if all files are present
expected_image_files = [join(folder, "imagesTs", c + "_%04.0d.nii.gz" % i) for i in range(num_modalities)]
assert all([isfile(i) for i in
expected_image_files]), "some image files are missing for case %s. Expected files:\n %s" % (
c, expected_image_files)
# verify that all modalities and the label have the same geometry. We use the affine for this
if num_modalities > 1:
images_itk = [sitk.ReadImage(i) for i in expected_image_files]
reference_img = images_itk[0]
for i, img in enumerate(images_itk[1:]):
assert verify_same_geometry(img, reference_img), "The modalities of the image %s do not seem to be " \
"registered. Please coregister your modalities." % (
expected_image_files[i])
# now remove checked files from the lists nii_files_in_imagesTr and nii_files_in_labelsTr
for i in expected_image_files:
nii_files_in_imagesTs.remove(os.path.basename(i))
assert len(
nii_files_in_imagesTs) == 0, "there are training cases in imagesTs that are not listed in dataset.json: %s" % nii_files_in_imagesTr
all_same, unique_orientations = verify_all_same_orientation(join(folder, "imagesTr"))
if not all_same:
print(
"WARNING: Not all images in the dataset have the same axis ordering. We very strongly recommend you correct that by reorienting the data. fslreorient2std should do the trick")
# save unique orientations to dataset.json
if not geometries_OK:
raise Warning("GEOMETRY MISMATCH FOUND! CHECK THE TEXT OUTPUT! This does not cause an error at this point but you should definitely check whether your geometries are alright!")
else:
print("Dataset OK")
if has_nan:
raise RuntimeError("Some images have nan values in them. This will break the training. See text output above to see which ones")
def reorient_to_RAS(img_fname: str, output_fname: str = None):
img = nib.load(img_fname)
canonical_img = nib.as_closest_canonical(img)
if output_fname is None:
output_fname = img_fname
nib.save(canonical_img, output_fname)
if __name__ == "__main__":
# investigate geometry issues
import SimpleITK as sitk
# load image
gt_itk = sitk.ReadImage(
"/media/fabian/Results/nnUNet/3d_fullres/Task064_KiTS_labelsFixed/nnUNetTrainerV2__nnUNetPlansv2.1/gt_niftis/case_00085.nii.gz")
# get numpy array
pred_npy = sitk.GetArrayFromImage(gt_itk)
# create new image from numpy array
prek_itk_new = sitk.GetImageFromArray(pred_npy)
# copy geometry
prek_itk_new.CopyInformation(gt_itk)
# prek_itk_new = copy_geometry(prek_itk_new, gt_itk)
# save
sitk.WriteImage(prek_itk_new, "test.mnc")
# load images in nib
gt = nib.load(
"/media/fabian/Results/nnUNet/3d_fullres/Task064_KiTS_labelsFixed/nnUNetTrainerV2__nnUNetPlansv2.1/gt_niftis/case_00085.nii.gz")
pred_nib = nib.load("test.mnc")
new_img_sitk = sitk.ReadImage("test.mnc")
np1 = sitk.GetArrayFromImage(gt_itk)
np2 = sitk.GetArrayFromImage(prek_itk_new)
|