File size: 10,436 Bytes
ecf08bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#    Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

import SimpleITK as sitk
import numpy as np
import shutil
from batchgenerators.utilities.file_and_folder_operations import *
from multiprocessing import Pool
from collections import OrderedDict
import copy


def create_nonzero_mask(data):
    from scipy.ndimage import binary_fill_holes
    assert len(data.shape) == 4 or len(data.shape) == 3, "data must have shape (C, X, Y, Z) or shape (C, X, Y)"
    nonzero_mask = np.zeros(data.shape[1:], dtype=bool)
    for c in range(data.shape[0]):
        this_mask = data[c] != 0
        nonzero_mask = nonzero_mask | this_mask
    nonzero_mask = binary_fill_holes(nonzero_mask)
    return nonzero_mask


def get_bbox_from_mask(mask, outside_value=0):
    mask_voxel_coords = np.where(mask != outside_value)
    minzidx = int(np.min(mask_voxel_coords[0]))
    maxzidx = int(np.max(mask_voxel_coords[0])) + 1
    minxidx = int(np.min(mask_voxel_coords[1]))
    maxxidx = int(np.max(mask_voxel_coords[1])) + 1
    minyidx = int(np.min(mask_voxel_coords[2]))
    maxyidx = int(np.max(mask_voxel_coords[2])) + 1
    return [[minzidx, maxzidx], [minxidx, maxxidx], [minyidx, maxyidx]]


def crop_to_bbox(image, bbox):
    if len(image.shape) == 3:
        resizer = (slice(bbox[0][0], bbox[0][1]), slice(bbox[1][0], bbox[1][1]), slice(bbox[2][0], bbox[2][1]))
        return image[resizer]
    elif len(image.shape) == 2:
        resizer = (slice(bbox[1][0], bbox[1][1]), slice(bbox[2][0], bbox[2][1]))
        return image[resizer]


def get_case_identifier(case):
    case_identifier = case[0].split("/")[-1].split(".nii.gz")[0][:-5]
    return case_identifier


def get_case_identifier_from_npz(case):
    case_identifier = case.split("/")[-1][:-4]
    return case_identifier


def load_case_from_list_of_files(data_files, seg_file=None):
    assert isinstance(data_files, list) or isinstance(data_files, tuple), "case must be either a list or a tuple"
    properties = OrderedDict()
    data_itk = [sitk.ReadImage(f) for f in data_files]

    properties["original_size_of_raw_data"] = np.array(data_itk[0].GetSize())[[2, 1, 0]]
    properties["original_spacing"] = np.array(data_itk[0].GetSpacing())[[2, 1, 0]]
    properties["list_of_data_files"] = data_files
    properties["seg_file"] = seg_file

    properties["itk_origin"] = data_itk[0].GetOrigin()
    properties["itk_spacing"] = data_itk[0].GetSpacing()
    properties["itk_direction"] = data_itk[0].GetDirection()

    data_npy = np.vstack([sitk.GetArrayFromImage(d)[None] for d in data_itk])
    if seg_file is not None:

        seg_itk = sitk.ReadImage(seg_file)
        seg_npy = sitk.GetArrayFromImage(seg_itk)[None].astype(np.float32)
    else:
        seg_npy = None
    return data_npy.astype(np.float32), seg_npy, properties


def crop_to_nonzero(data, seg=None, nonzero_label=0):
    """

    :param data:
    :param seg:
    :param nonzero_label: this will be written into the segmentation map
    :return:
    """

    nonzero_mask = create_nonzero_mask(data)
    bbox = get_bbox_from_mask(nonzero_mask, 0)

    cropped_data = []
    for c in range(data.shape[0]):
        cropped = crop_to_bbox(data[c], bbox)
        cropped_data.append(cropped[None])
    data = np.vstack(cropped_data)


    if not isinstance(seg, type(None)):
        if seg.shape[1] == data.shape[1]:
            if seg is not None:
                cropped_seg = []
                for c in range(seg.shape[0]):
                    cropped = crop_to_bbox(seg[c], bbox)
                    cropped_seg.append(cropped[None])
                seg = np.vstack(cropped_seg)

            nonzero_mask = crop_to_bbox(nonzero_mask, bbox)[None]
            if seg is not None:
                seg[(seg == 0) & (nonzero_mask == 0)] = nonzero_label
            else:
                nonzero_mask = nonzero_mask.astype(int)
                nonzero_mask[nonzero_mask == 0] = nonzero_label
                nonzero_mask[nonzero_mask > 0] = 0
                seg = nonzero_mask
            return data, seg, bbox

        elif seg.shape[1] > data.shape[1]:
            # not very clean but should work
            bbox_for_seg = copy.copy(bbox)
            bbox_for_seg[0] = [0, seg.shape[1]]

            nonzero_mask_seg = np.array([nonzero_mask[0] for i in range(seg.shape[1])])
            if seg is not None:
                cropped_seg = []
                for c in range(seg.shape[0]):
                    cropped = crop_to_bbox(seg[c], bbox_for_seg)
                    cropped_seg.append(cropped[None])
                seg = np.vstack(cropped_seg)

            # dont understand what happens here\
            # all zeros values are set to -1. But why ?
            nonzero_mask = crop_to_bbox(nonzero_mask_seg, bbox_for_seg)[None]

            if seg is not None:
                seg[(seg == 0) & (nonzero_mask == 0)] = nonzero_label
            else:
                nonzero_mask = nonzero_mask.astype(int)
                nonzero_mask[nonzero_mask == 0] = nonzero_label
                nonzero_mask[nonzero_mask > 0] = 0
                seg = nonzero_mask
            return data, seg, bbox
    return data, seg, bbox


def get_patient_identifiers_from_cropped_files(folder):
    return [i.split("/")[-1][:-4] for i in subfiles(folder, join=True, suffix=".npz")]


class ImageCropper(object):
    def __init__(self, num_threads, output_folder=None):
        """
        This one finds a mask of nonzero elements (must be nonzero in all modalities) and crops the image to that mask.
        In the case of BRaTS and ISLES data this results in a significant reduction in image size
        :param num_threads:
        :param output_folder: whete to store the cropped data
        :param list_of_files:
        """
        self.output_folder = output_folder
        self.num_threads = num_threads

        if self.output_folder is not None:
            maybe_mkdir_p(self.output_folder)

    @staticmethod
    def crop(data, properties, seg=None):
        shape_before = data.shape
        data, seg, bbox = crop_to_nonzero(data, seg, nonzero_label=0)
        shape_after = data.shape
        print("before crop:", shape_before, "after crop:", shape_after, "spacing:",
              np.array(properties["original_spacing"]), "\n")

        properties["crop_bbox"] = bbox
        # TODO can only work with <50 segmentation classes in one label
        if not isinstance(seg, type(None)):
            classes = [np.unique(segx) for segx in seg[0]]
            for i,c in enumerate(classes):
                classes[i] = c if len(c)<50 else [0]
            properties["classes"] = classes
            seg[seg < -1] = 0
        properties["size_after_cropping"] = data[0].shape
        return data, seg, properties

    @staticmethod
    def crop_from_list_of_files(data_files, seg_file=None):
        data, seg, properties = load_case_from_list_of_files(data_files, seg_file)
        return ImageCropper.crop(data, properties, seg)

    def load_crop_save(self, case, case_identifier, overwrite_existing=False):
        try:
            print(case_identifier)
            if overwrite_existing \
                    or (not os.path.isfile(os.path.join(self.output_folder, "%s.npz" % case_identifier))
                        or not os.path.isfile(os.path.join(self.output_folder, "%s.pkl" % case_identifier))):
                data, seg, properties = self.crop_from_list_of_files(case[:-1], case[-1])

                all_data = np.vstack((data, seg.transpose((1, 0, 2, 3))))
                np.savez_compressed(os.path.join(self.output_folder, "%s.npz" % case_identifier), data=all_data)
                with open(os.path.join(self.output_folder, "%s.pkl" % case_identifier), 'wb') as f:
                    pickle.dump(properties, f)
        except Exception as e:
            print("Exception in", case_identifier, ":")
            print(e)
            raise e

    def get_list_of_cropped_files(self):
        return subfiles(self.output_folder, join=True, suffix=".npz")

    def get_patient_identifiers_from_cropped_files(self):
        return [i.split("/")[-1][:-4] for i in self.get_list_of_cropped_files()]

    def run_cropping(self, list_of_files, overwrite_existing=False, output_folder=None):
        """
        also copied ground truth nifti segmentation into the preprocessed folder so that we can use them for evaluation
        on the cluster
        :param list_of_files: list of list of files [[PATIENTID_TIMESTEP_0000.nii.gz], [PATIENTID_TIMESTEP_0000.nii.gz]]
        :param overwrite_existing:
        :param output_folder:
        :return:
        """
        if output_folder is not None:
            self.output_folder = output_folder

        output_folder_gt = os.path.join(self.output_folder, "gt_segmentations")
        maybe_mkdir_p(output_folder_gt)
        for j, case in enumerate(list_of_files):
            if case[-1] is not None:
                shutil.copy(case[-1], output_folder_gt)

        list_of_args = []
        for j, case in enumerate(list_of_files):
            case_identifier = get_case_identifier(case)
            # What the fuck happens here
            list_of_args.append((case, case_identifier, overwrite_existing))

        """
        self.load_crop_save(case, case_identifier)
        """
        p = Pool(self.num_threads)
        p.starmap(self.load_crop_save, list_of_args)
        p.close()
        p.join()


    def load_properties(self, case_identifier):
        with open(os.path.join(self.output_folder, "%s.pkl" % case_identifier), 'rb') as f:
            properties = pickle.load(f)
        return properties

    def save_properties(self, case_identifier, properties):
        with open(os.path.join(self.output_folder, "%s.pkl" % case_identifier), 'wb') as f:
            pickle.dump(properties, f)