File size: 12,509 Bytes
ecf08bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#    Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


import sys
from copy import deepcopy
from typing import Union, Tuple



import numpy as np
import SimpleITK as sitk
from batchgenerators.augmentations.utils import resize_segmentation
from nnunet.preprocessing.preprocessing import get_lowres_axis, get_do_separate_z, resample_data_or_seg
from batchgenerators.utilities.file_and_folder_operations import *


def save_segmentation_nifti_from_softmax(segmentation_softmax: Union[str, np.ndarray], out_fname: str,
                                         properties_dict: dict, order: int = 1,
                                         region_class_order: Tuple[Tuple[int]] = None,
                                         seg_postprogess_fn: callable = None, seg_postprocess_args: tuple = None,
                                         resampled_npz_fname: str = None,
                                         non_postprocessed_fname: str = None, force_separate_z: bool = None,
                                         interpolation_order_z: int = 0, verbose: bool = True):
    """
    This is a utility for writing segmentations to nifto and npz. It requires the data to have been preprocessed by
    GenericPreprocessor because it depends on the property dictionary output (dct) to know the geometry of the original
    data. segmentation_softmax does not have to have the same size in pixels as the original data, it will be
    resampled to match that. This is generally useful because the spacings our networks operate on are most of the time
    not the native spacings of the image data.
    If seg_postprogess_fn is not None then seg_postprogess_fnseg_postprogess_fn(segmentation, *seg_postprocess_args)
    will be called before nifto export
    There is a problem with python process communication that prevents us from communicating obejcts
    larger than 2 GB between processes (basically when the length of the pickle string that will be sent is
    communicated by the multiprocessing.Pipe object then the placeholder (\%i I think) does not allow for long
    enough strings (lol). This could be fixed by changing i to l (for long) but that would require manually
    patching system python code.) We circumvent that problem here by saving softmax_pred to a npy file that will
    then be read (and finally deleted) by the Process. save_segmentation_nifti_from_softmax can take either
    filename or np.ndarray for segmentation_softmax and will handle this automatically
    :param segmentation_softmax:
    :param out_fname:
    :param properties_dict:
    :param order:
    :param region_class_order:
    :param seg_postprogess_fn:
    :param seg_postprocess_args:
    :param resampled_npz_fname:
    :param non_postprocessed_fname:
    :param force_separate_z: if None then we dynamically decide how to resample along z, if True/False then always
    /never resample along z separately. Do not touch unless you know what you are doing
    :param interpolation_order_z: if separate z resampling is done then this is the order for resampling in z
    :param verbose:
    :return:
    """
    if verbose: print("force_separate_z:", force_separate_z, "interpolation order:", order)

    if isinstance(segmentation_softmax, str):
        assert isfile(segmentation_softmax), "If isinstance(segmentation_softmax, str) then " \
                                             "isfile(segmentation_softmax) must be True"
        del_file = deepcopy(segmentation_softmax)
        segmentation_softmax = np.load(segmentation_softmax)
        os.remove(del_file)

    # first resample, then put result into bbox of cropping, then save
    current_shape = segmentation_softmax.shape
    shape_original_after_cropping = properties_dict.get('size_after_cropping')
    shape_original_before_cropping = properties_dict.get('original_size_of_raw_data')
    # current_spacing = dct.get('spacing_after_resampling')
    # original_spacing = dct.get('original_spacing')

    if np.any([i != j for i, j in zip(np.array(current_shape[1:]), np.array(shape_original_after_cropping))]):
        if force_separate_z is None:
            if get_do_separate_z(properties_dict.get('original_spacing')):
                do_separate_z = True
                lowres_axis = get_lowres_axis(properties_dict.get('original_spacing'))
            elif get_do_separate_z(properties_dict.get('spacing_after_resampling')):
                do_separate_z = True
                lowres_axis = get_lowres_axis(properties_dict.get('spacing_after_resampling'))
            else:
                do_separate_z = False
                lowres_axis = None
        else:
            do_separate_z = force_separate_z
            if do_separate_z:
                lowres_axis = get_lowres_axis(properties_dict.get('original_spacing'))
            else:
                lowres_axis = None

        if lowres_axis is not None and len(lowres_axis) != 1:
            # this happens for spacings like (0.24, 1.25, 1.25) for example. In that case we do not want to resample
            # separately in the out of plane axis
            do_separate_z = False

        if verbose: print("separate z:", do_separate_z, "lowres axis", lowres_axis)
        seg_old_spacing = resample_data_or_seg(segmentation_softmax, shape_original_after_cropping, is_seg=False,
                                               axis=lowres_axis, order=order, do_separate_z=do_separate_z,
                                               order_z=interpolation_order_z)
        # seg_old_spacing = resize_softmax_output(segmentation_softmax, shape_original_after_cropping, order=order)
    else:
        if verbose: print("no resampling necessary")
        seg_old_spacing = segmentation_softmax

    if resampled_npz_fname is not None:
        np.savez_compressed(resampled_npz_fname, softmax=seg_old_spacing.astype(np.float16))
        # this is needed for ensembling if the nonlinearity is sigmoid
        if region_class_order is not None:
            properties_dict['regions_class_order'] = region_class_order
        save_pickle(properties_dict, resampled_npz_fname[:-4] + ".pkl")

    if region_class_order is None:
        labels = properties_dict['classes']
        shape = np.array(seg_old_spacing.shape)[1:]
        shape[0] = len(labels)
        seg_old_space = np.zeros(shape)
        counter = 0
        for i, label in enumerate(labels):
            classes = len(label)
            if classes == 1:
                seg_old_space[i] = seg_old_spacing[counter:classes + counter]
            else:
                seg_old_space[i] = seg_old_spacing[counter:classes+counter].argmax(0)[0]
            counter += classes

        seg_old_spacing = seg_old_space


    else:
        seg_old_spacing_final = np.zeros(seg_old_spacing.shape[1:])
        for i, c in enumerate(region_class_order):
            seg_old_spacing_final[seg_old_spacing[i] > 0.5] = c
        seg_old_spacing = seg_old_spacing_final

    bbox = properties_dict.get('crop_bbox')

    if bbox is not None:
        shape_original_before_cropping[0] = len(properties_dict['classes'])
        seg_old_size = np.zeros(shape_original_before_cropping)
        for c in range(3):
            bbox[c][1] = np.min((bbox[c][0] + seg_old_spacing.shape[c], shape_original_before_cropping[c]))
        seg_old_size[:,
        bbox[1][0]:bbox[1][1],
        bbox[2][0]:bbox[2][1]] = seg_old_spacing
    else:
        seg_old_size = seg_old_spacing

    if seg_postprogess_fn is not None:
        seg_old_size_postprocessed = seg_postprogess_fn(np.copy(seg_old_size), *seg_postprocess_args)
    else:
        seg_old_size_postprocessed = seg_old_size

    seg_resized_itk = sitk.GetImageFromArray(seg_old_size_postprocessed.astype(float))
    seg_resized_itk.SetSpacing(properties_dict['itk_spacing'])
    seg_resized_itk.SetOrigin(properties_dict['itk_origin'])
    seg_resized_itk.SetDirection(properties_dict['itk_direction'])
    sitk.WriteImage(seg_resized_itk, out_fname)

    if (non_postprocessed_fname is not None) and (seg_postprogess_fn is not None):
        seg_resized_itk = sitk.GetImageFromArray(seg_old_size.astype(np.uint8))
        seg_resized_itk.SetSpacing(properties_dict['itk_spacing'])
        seg_resized_itk.SetOrigin(properties_dict['itk_origin'])
        seg_resized_itk.SetDirection(properties_dict['itk_direction'])
        sitk.WriteImage(seg_resized_itk, non_postprocessed_fname)


def save_segmentation_nifti(segmentation, out_fname, dct, order=1, force_separate_z=None, order_z=0):
    """
    faster and uses less ram than save_segmentation_nifti_from_softmax, but maybe less precise and also does not support
    softmax export (which is needed for ensembling). So it's a niche function that may be useful in some cases.
    :param segmentation:
    :param out_fname:
    :param dct:
    :param order:
    :param force_separate_z:
    :return:
    """
    # suppress output
    print("force_separate_z:", force_separate_z, "interpolation order:", order)
    sys.stdout = open(os.devnull, 'w')

    if isinstance(segmentation, str):
        assert isfile(segmentation), "If isinstance(segmentation_softmax, str) then " \
                                     "isfile(segmentation_softmax) must be True"
        del_file = deepcopy(segmentation)
        segmentation = np.load(segmentation)
        os.remove(del_file)

    # first resample, then put result into bbox of cropping, then save
    current_shape = segmentation.shape
    shape_original_after_cropping = dct.get('size_after_cropping')
    shape_original_before_cropping = dct.get('original_size_of_raw_data')
    # current_spacing = dct.get('spacing_after_resampling')
    # original_spacing = dct.get('original_spacing')

    if np.any(np.array(current_shape) != np.array(shape_original_after_cropping)):
        if order == 0:
            seg_old_spacing = resize_segmentation(segmentation, shape_original_after_cropping, 0)
        else:
            if force_separate_z is None:
                if get_do_separate_z(dct.get('original_spacing')):
                    do_separate_z = True
                    lowres_axis = get_lowres_axis(dct.get('original_spacing'))
                elif get_do_separate_z(dct.get('spacing_after_resampling')):
                    do_separate_z = True
                    lowres_axis = get_lowres_axis(dct.get('spacing_after_resampling'))
                else:
                    do_separate_z = False
                    lowres_axis = None
            else:
                do_separate_z = force_separate_z
                if do_separate_z:
                    lowres_axis = get_lowres_axis(dct.get('original_spacing'))
                else:
                    lowres_axis = None

            print("separate z:", do_separate_z, "lowres axis", lowres_axis)
            seg_old_spacing = resample_data_or_seg(segmentation[None], shape_original_after_cropping, is_seg=True,
                                                   axis=lowres_axis, order=order, do_separate_z=do_separate_z,
                                                   order_z=order_z)[0]
    else:
        seg_old_spacing = segmentation

    bbox = dct.get('crop_bbox')

    if bbox is not None:
        seg_old_size = np.zeros(shape_original_before_cropping)
        for c in range(3):
            bbox[c][1] = np.min((bbox[c][0] + seg_old_spacing.shape[c], shape_original_before_cropping[c]))
        seg_old_size[bbox[0][0]:bbox[0][1],
        bbox[1][0]:bbox[1][1],
        bbox[2][0]:bbox[2][1]] = seg_old_spacing
    else:
        seg_old_size = seg_old_spacing

    seg_resized_itk = sitk.GetImageFromArray(seg_old_size.astype(np.uint8))
    seg_resized_itk.SetSpacing(dct['itk_spacing'])
    seg_resized_itk.SetOrigin(dct['itk_origin'])
    seg_resized_itk.SetDirection(dct['itk_direction'])
    sitk.WriteImage(seg_resized_itk, out_fname)

    sys.stdout = sys.__stdout__