File size: 10,545 Bytes
ecf08bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from copy import deepcopy
from nnunet.network_architecture.generic_UNet import Generic_UNet
import SimpleITK as sitk
import shutil
from batchgenerators.utilities.file_and_folder_operations import join
def split_4d_nifti(filename, output_folder):
img_itk = sitk.ReadImage(filename)
dim = img_itk.GetDimension()
file_base = filename.split("/")[-1]
if dim == 3:
shutil.copy(filename, join(output_folder, file_base[:-7] + "_0000.nii.gz"))
return
elif dim != 4:
raise RuntimeError("Unexpected dimensionality: %d of file %s, cannot split" % (dim, filename))
else:
img_npy = sitk.GetArrayFromImage(img_itk)
spacing = img_itk.GetSpacing()
origin = img_itk.GetOrigin()
direction = np.array(img_itk.GetDirection()).reshape(4,4)
# now modify these to remove the fourth dimension
spacing = tuple(list(spacing[:-1]))
origin = tuple(list(origin[:-1]))
direction = tuple(direction[:-1, :-1].reshape(-1))
for i, t in enumerate(range(img_npy.shape[0])):
img = img_npy[t]
img_itk_new = sitk.GetImageFromArray(img)
img_itk_new.SetSpacing(spacing)
img_itk_new.SetOrigin(origin)
img_itk_new.SetDirection(direction)
sitk.WriteImage(img_itk_new, join(output_folder, file_base[:-7] + "_%04.0d.nii.gz" % i))
def get_pool_and_conv_props_poolLateV2(patch_size, min_feature_map_size, max_numpool, spacing):
"""
:param spacing:
:param patch_size:
:param min_feature_map_size: min edge length of feature maps in bottleneck
:return:
"""
initial_spacing = deepcopy(spacing)
reach = max(initial_spacing)
dim = len(patch_size)
num_pool_per_axis = get_network_numpool(patch_size, max_numpool, min_feature_map_size)
net_num_pool_op_kernel_sizes = []
net_conv_kernel_sizes = []
net_numpool = max(num_pool_per_axis)
current_spacing = spacing
for p in range(net_numpool):
reached = [current_spacing[i] / reach > 0.5 for i in range(dim)]
pool = [2 if num_pool_per_axis[i] + p >= net_numpool else 1 for i in range(dim)]
if all(reached):
conv = [3] * dim
else:
conv = [3 if not reached[i] else 1 for i in range(dim)]
net_num_pool_op_kernel_sizes.append(pool)
net_conv_kernel_sizes.append(conv)
current_spacing = [i * j for i, j in zip(current_spacing, pool)]
net_conv_kernel_sizes.append([3] * dim)
must_be_divisible_by = get_shape_must_be_divisible_by(num_pool_per_axis)
patch_size = pad_shape(patch_size, must_be_divisible_by)
# we need to add one more conv_kernel_size for the bottleneck. We always use 3x3(x3) conv here
return num_pool_per_axis, net_num_pool_op_kernel_sizes, net_conv_kernel_sizes, patch_size, must_be_divisible_by
def get_pool_and_conv_props(spacing, patch_size, min_feature_map_size, max_numpool):
"""
:param spacing:
:param patch_size:
:param min_feature_map_size: min edge length of feature maps in bottleneck
:return:
"""
dim = len(spacing)
current_spacing = deepcopy(list(spacing))
current_size = deepcopy(list(patch_size))
pool_op_kernel_sizes = []
conv_kernel_sizes = []
num_pool_per_axis = [0] * dim
while True:
# This is a problem because sometimes we have spacing 20, 50, 50 and we want to still keep pooling.
# Here we would stop however. This is not what we want! Fixed in get_pool_and_conv_propsv2
min_spacing = min(current_spacing)
valid_axes_for_pool = [i for i in range(dim) if current_spacing[i] / min_spacing < 2]
axes = []
for a in range(dim):
my_spacing = current_spacing[a]
partners = [i for i in range(dim) if current_spacing[i] / my_spacing < 2 and my_spacing / current_spacing[i] < 2]
if len(partners) > len(axes):
axes = partners
conv_kernel_size = [3 if i in axes else 1 for i in range(dim)]
# exclude axes that we cannot pool further because of min_feature_map_size constraint
#before = len(valid_axes_for_pool)
valid_axes_for_pool = [i for i in valid_axes_for_pool if current_size[i] >= 2*min_feature_map_size]
#after = len(valid_axes_for_pool)
#if after == 1 and before > 1:
# break
valid_axes_for_pool = [i for i in valid_axes_for_pool if num_pool_per_axis[i] < max_numpool]
if len(valid_axes_for_pool) == 0:
break
#print(current_spacing, current_size)
other_axes = [i for i in range(dim) if i not in valid_axes_for_pool]
pool_kernel_sizes = [0] * dim
for v in valid_axes_for_pool:
pool_kernel_sizes[v] = 2
num_pool_per_axis[v] += 1
current_spacing[v] *= 2
current_size[v] = np.ceil(current_size[v] / 2)
for nv in other_axes:
pool_kernel_sizes[nv] = 1
pool_op_kernel_sizes.append(pool_kernel_sizes)
conv_kernel_sizes.append(conv_kernel_size)
#print(conv_kernel_sizes)
must_be_divisible_by = get_shape_must_be_divisible_by(num_pool_per_axis)
patch_size = pad_shape(patch_size, must_be_divisible_by)
# we need to add one more conv_kernel_size for the bottleneck. We always use 3x3(x3) conv here
conv_kernel_sizes.append([3]*dim)
return num_pool_per_axis, pool_op_kernel_sizes, conv_kernel_sizes, patch_size, must_be_divisible_by
def get_pool_and_conv_props_v2(spacing, patch_size, min_feature_map_size, max_numpool):
"""
:param spacing:
:param patch_size:
:param min_feature_map_size: min edge length of feature maps in bottleneck
:return:
"""
dim = len(spacing)
current_spacing = deepcopy(list(spacing))
current_size = deepcopy(list(patch_size))
pool_op_kernel_sizes = []
conv_kernel_sizes = []
num_pool_per_axis = [0] * dim
kernel_size = [1] * dim
while True:
# exclude axes that we cannot pool further because of min_feature_map_size constraint
valid_axes_for_pool = [i for i in range(dim) if current_size[i] >= 2*min_feature_map_size]
if len(valid_axes_for_pool) < 1:
break
spacings_of_axes = [current_spacing[i] for i in valid_axes_for_pool]
# find axis that are within factor of 2 within smallest spacing
min_spacing_of_valid = min(spacings_of_axes)
valid_axes_for_pool = [i for i in valid_axes_for_pool if current_spacing[i] / min_spacing_of_valid < 2]
# max_numpool constraint
valid_axes_for_pool = [i for i in valid_axes_for_pool if num_pool_per_axis[i] < max_numpool]
if len(valid_axes_for_pool) == 1:
if current_size[valid_axes_for_pool[0]] >= 3 * min_feature_map_size:
pass
else:
break
if len(valid_axes_for_pool) < 1:
break
# now we need to find kernel sizes
# kernel sizes are initialized to 1. They are successively set to 3 when their associated axis becomes within
# factor 2 of min_spacing. Once they are 3 they remain 3
for d in range(dim):
if kernel_size[d] == 3:
continue
else:
if spacings_of_axes[d] / min(current_spacing) < 2:
kernel_size[d] = 3
other_axes = [i for i in range(dim) if i not in valid_axes_for_pool]
pool_kernel_sizes = [0] * dim
for v in valid_axes_for_pool:
pool_kernel_sizes[v] = 2
num_pool_per_axis[v] += 1
current_spacing[v] *= 2
current_size[v] = np.ceil(current_size[v] / 2)
for nv in other_axes:
pool_kernel_sizes[nv] = 1
pool_op_kernel_sizes.append(pool_kernel_sizes)
conv_kernel_sizes.append(deepcopy(kernel_size))
#print(conv_kernel_sizes)
must_be_divisible_by = get_shape_must_be_divisible_by(num_pool_per_axis)
patch_size = pad_shape(patch_size, must_be_divisible_by)
# we need to add one more conv_kernel_size for the bottleneck. We always use 3x3(x3) conv here
conv_kernel_sizes.append([3]*dim)
return num_pool_per_axis, pool_op_kernel_sizes, conv_kernel_sizes, patch_size, must_be_divisible_by
def get_shape_must_be_divisible_by(net_numpool_per_axis):
return 2 ** np.array(net_numpool_per_axis)
def pad_shape(shape, must_be_divisible_by):
"""
pads shape so that it is divisibly by must_be_divisible_by
:param shape:
:param must_be_divisible_by:
:return:
"""
if not isinstance(must_be_divisible_by, (tuple, list, np.ndarray)):
must_be_divisible_by = [must_be_divisible_by] * len(shape)
else:
assert len(must_be_divisible_by) == len(shape)
new_shp = [shape[i] + must_be_divisible_by[i] - shape[i] % must_be_divisible_by[i] for i in range(len(shape))]
for i in range(len(shape)):
if shape[i] % must_be_divisible_by[i] == 0:
new_shp[i] -= must_be_divisible_by[i]
new_shp = np.array(new_shp).astype(int)
return new_shp
def get_network_numpool(patch_size, maxpool_cap=999, min_feature_map_size=4):
network_numpool_per_axis = np.floor([np.log(i / min_feature_map_size) / np.log(2) for i in patch_size]).astype(int)
network_numpool_per_axis = [min(i, maxpool_cap) for i in network_numpool_per_axis]
return network_numpool_per_axis
if __name__ == '__main__':
# trying to fix https://github.com/MIC-DKFZ/nnUNet/issues/261
median_shape = [24, 504, 512]
spacing = [5.9999094, 0.50781202, 0.50781202]
num_pool_per_axis, net_num_pool_op_kernel_sizes, net_conv_kernel_sizes, patch_size, must_be_divisible_by = get_pool_and_conv_props_poolLateV2(median_shape, min_feature_map_size=4, max_numpool=999, spacing=spacing)
|