File size: 10,545 Bytes
ecf08bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#    Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

import numpy as np
from copy import deepcopy
from nnunet.network_architecture.generic_UNet import Generic_UNet
import SimpleITK as sitk
import shutil
from batchgenerators.utilities.file_and_folder_operations import join


def split_4d_nifti(filename, output_folder):
    img_itk = sitk.ReadImage(filename)
    dim = img_itk.GetDimension()
    file_base = filename.split("/")[-1]
    if dim == 3:
        shutil.copy(filename, join(output_folder, file_base[:-7] + "_0000.nii.gz"))
        return
    elif dim != 4:
        raise RuntimeError("Unexpected dimensionality: %d of file %s, cannot split" % (dim, filename))
    else:
        img_npy = sitk.GetArrayFromImage(img_itk)
        spacing = img_itk.GetSpacing()
        origin = img_itk.GetOrigin()
        direction = np.array(img_itk.GetDirection()).reshape(4,4)
        # now modify these to remove the fourth dimension
        spacing = tuple(list(spacing[:-1]))
        origin = tuple(list(origin[:-1]))
        direction = tuple(direction[:-1, :-1].reshape(-1))
        for i, t in enumerate(range(img_npy.shape[0])):
            img = img_npy[t]
            img_itk_new = sitk.GetImageFromArray(img)
            img_itk_new.SetSpacing(spacing)
            img_itk_new.SetOrigin(origin)
            img_itk_new.SetDirection(direction)
            sitk.WriteImage(img_itk_new, join(output_folder, file_base[:-7] + "_%04.0d.nii.gz" % i))


def get_pool_and_conv_props_poolLateV2(patch_size, min_feature_map_size, max_numpool, spacing):
    """

    :param spacing:
    :param patch_size:
    :param min_feature_map_size: min edge length of feature maps in bottleneck
    :return:
    """
    initial_spacing = deepcopy(spacing)
    reach = max(initial_spacing)
    dim = len(patch_size)

    num_pool_per_axis = get_network_numpool(patch_size, max_numpool, min_feature_map_size)

    net_num_pool_op_kernel_sizes = []
    net_conv_kernel_sizes = []
    net_numpool = max(num_pool_per_axis)

    current_spacing = spacing
    for p in range(net_numpool):
        reached = [current_spacing[i] / reach > 0.5 for i in range(dim)]
        pool = [2 if num_pool_per_axis[i] + p >= net_numpool else 1 for i in range(dim)]
        if all(reached):
            conv = [3] * dim
        else:
            conv = [3 if not reached[i] else 1 for i in range(dim)]
        net_num_pool_op_kernel_sizes.append(pool)
        net_conv_kernel_sizes.append(conv)
        current_spacing = [i * j for i, j in zip(current_spacing, pool)]

    net_conv_kernel_sizes.append([3] * dim)

    must_be_divisible_by = get_shape_must_be_divisible_by(num_pool_per_axis)
    patch_size = pad_shape(patch_size, must_be_divisible_by)

    # we need to add one more conv_kernel_size for the bottleneck. We always use 3x3(x3) conv here
    return num_pool_per_axis, net_num_pool_op_kernel_sizes, net_conv_kernel_sizes, patch_size, must_be_divisible_by


def get_pool_and_conv_props(spacing, patch_size, min_feature_map_size, max_numpool):
    """

    :param spacing:
    :param patch_size:
    :param min_feature_map_size: min edge length of feature maps in bottleneck
    :return:
    """
    dim = len(spacing)

    current_spacing = deepcopy(list(spacing))
    current_size = deepcopy(list(patch_size))

    pool_op_kernel_sizes = []
    conv_kernel_sizes = []

    num_pool_per_axis = [0] * dim

    while True:
        # This is a problem because sometimes we have spacing 20, 50, 50 and we want to still keep pooling.
        # Here we would stop however. This is not what we want! Fixed in get_pool_and_conv_propsv2
        min_spacing = min(current_spacing)
        valid_axes_for_pool = [i for i in range(dim) if current_spacing[i] / min_spacing < 2]
        axes = []
        for a in range(dim):
            my_spacing = current_spacing[a]
            partners = [i for i in range(dim) if current_spacing[i] / my_spacing < 2 and my_spacing / current_spacing[i] < 2]
            if len(partners) > len(axes):
                axes = partners
        conv_kernel_size = [3 if i in axes else 1 for i in range(dim)]

        # exclude axes that we cannot pool further because of min_feature_map_size constraint
        #before = len(valid_axes_for_pool)
        valid_axes_for_pool = [i for i in valid_axes_for_pool if current_size[i] >= 2*min_feature_map_size]
        #after = len(valid_axes_for_pool)
        #if after == 1 and before > 1:
        #    break

        valid_axes_for_pool = [i for i in valid_axes_for_pool if num_pool_per_axis[i] < max_numpool]

        if len(valid_axes_for_pool) == 0:
            break

        #print(current_spacing, current_size)

        other_axes = [i for i in range(dim) if i not in valid_axes_for_pool]

        pool_kernel_sizes = [0] * dim
        for v in valid_axes_for_pool:
            pool_kernel_sizes[v] = 2
            num_pool_per_axis[v] += 1
            current_spacing[v] *= 2
            current_size[v] = np.ceil(current_size[v] / 2)
        for nv in other_axes:
            pool_kernel_sizes[nv] = 1

        pool_op_kernel_sizes.append(pool_kernel_sizes)
        conv_kernel_sizes.append(conv_kernel_size)
        #print(conv_kernel_sizes)

    must_be_divisible_by = get_shape_must_be_divisible_by(num_pool_per_axis)
    patch_size = pad_shape(patch_size, must_be_divisible_by)

    # we need to add one more conv_kernel_size for the bottleneck. We always use 3x3(x3) conv here
    conv_kernel_sizes.append([3]*dim)
    return num_pool_per_axis, pool_op_kernel_sizes, conv_kernel_sizes, patch_size, must_be_divisible_by


def get_pool_and_conv_props_v2(spacing, patch_size, min_feature_map_size, max_numpool):
    """

    :param spacing:
    :param patch_size:
    :param min_feature_map_size: min edge length of feature maps in bottleneck
    :return:
    """
    dim = len(spacing)

    current_spacing = deepcopy(list(spacing))
    current_size = deepcopy(list(patch_size))

    pool_op_kernel_sizes = []
    conv_kernel_sizes = []

    num_pool_per_axis = [0] * dim
    kernel_size = [1] * dim

    while True:
        # exclude axes that we cannot pool further because of min_feature_map_size constraint
        valid_axes_for_pool = [i for i in range(dim) if current_size[i] >= 2*min_feature_map_size]
        if len(valid_axes_for_pool) < 1:
            break

        spacings_of_axes = [current_spacing[i] for i in valid_axes_for_pool]

        # find axis that are within factor of 2 within smallest spacing
        min_spacing_of_valid = min(spacings_of_axes)
        valid_axes_for_pool = [i for i in valid_axes_for_pool if current_spacing[i] / min_spacing_of_valid < 2]

        # max_numpool constraint
        valid_axes_for_pool = [i for i in valid_axes_for_pool if num_pool_per_axis[i] < max_numpool]

        if len(valid_axes_for_pool) == 1:
            if current_size[valid_axes_for_pool[0]] >= 3 * min_feature_map_size:
                pass
            else:
                break
        if len(valid_axes_for_pool) < 1:
            break

        # now we need to find kernel sizes
        # kernel sizes are initialized to 1. They are successively set to 3 when their associated axis becomes within
        # factor 2 of min_spacing. Once they are 3 they remain 3
        for d in range(dim):
            if kernel_size[d] == 3:
                continue
            else:
                if spacings_of_axes[d] / min(current_spacing) < 2:
                    kernel_size[d] = 3

        other_axes = [i for i in range(dim) if i not in valid_axes_for_pool]

        pool_kernel_sizes = [0] * dim
        for v in valid_axes_for_pool:
            pool_kernel_sizes[v] = 2
            num_pool_per_axis[v] += 1
            current_spacing[v] *= 2
            current_size[v] = np.ceil(current_size[v] / 2)
        for nv in other_axes:
            pool_kernel_sizes[nv] = 1

        pool_op_kernel_sizes.append(pool_kernel_sizes)
        conv_kernel_sizes.append(deepcopy(kernel_size))
        #print(conv_kernel_sizes)

    must_be_divisible_by = get_shape_must_be_divisible_by(num_pool_per_axis)
    patch_size = pad_shape(patch_size, must_be_divisible_by)

    # we need to add one more conv_kernel_size for the bottleneck. We always use 3x3(x3) conv here
    conv_kernel_sizes.append([3]*dim)
    return num_pool_per_axis, pool_op_kernel_sizes, conv_kernel_sizes, patch_size, must_be_divisible_by


def get_shape_must_be_divisible_by(net_numpool_per_axis):
    return 2 ** np.array(net_numpool_per_axis)


def pad_shape(shape, must_be_divisible_by):
    """
    pads shape so that it is divisibly by must_be_divisible_by
    :param shape:
    :param must_be_divisible_by:
    :return:
    """
    if not isinstance(must_be_divisible_by, (tuple, list, np.ndarray)):
        must_be_divisible_by = [must_be_divisible_by] * len(shape)
    else:
        assert len(must_be_divisible_by) == len(shape)

    new_shp = [shape[i] + must_be_divisible_by[i] - shape[i] % must_be_divisible_by[i] for i in range(len(shape))]

    for i in range(len(shape)):
        if shape[i] % must_be_divisible_by[i] == 0:
            new_shp[i] -= must_be_divisible_by[i]
    new_shp = np.array(new_shp).astype(int)
    return new_shp


def get_network_numpool(patch_size, maxpool_cap=999, min_feature_map_size=4):
    network_numpool_per_axis = np.floor([np.log(i / min_feature_map_size) / np.log(2) for i in patch_size]).astype(int)
    network_numpool_per_axis = [min(i, maxpool_cap) for i in network_numpool_per_axis]
    return network_numpool_per_axis


if __name__ == '__main__':
    # trying to fix https://github.com/MIC-DKFZ/nnUNet/issues/261
    median_shape = [24, 504, 512]
    spacing = [5.9999094, 0.50781202, 0.50781202]
    num_pool_per_axis, net_num_pool_op_kernel_sizes, net_conv_kernel_sizes, patch_size, must_be_divisible_by = get_pool_and_conv_props_poolLateV2(median_shape, min_feature_map_size=4, max_numpool=999, spacing=spacing)